10.1002/anie.201800699
Angewandte Chemie International Edition
COMMUNICATION
F
O
O
sulfonamide
common nucleophile
in cross-coupling
heteroaryl amine
common nucleophile
in cross-coupling
Keywords: sulfonamides • energy transfer • heterocycles •
S
F
N
NH2
nickel • photocatalysis
N
NH2
[1]
[2]
Fischer, C.; Koenig, B. Belstein J. Org. Chem. 2011, 7, 59–74.
(a) Feng, M.; Tang, B.; Liang, S. H.; Jiang, X. Curr. Top. Med. Chem.
2016, 16, 1200–1216. (b) Scozzafava, A.; Owa, T.; Mastrolorenzo, A.;
Supuran, C. T. Curr. Med. Chem. 2003, 10, 925–953.
F
F
O
O
S
F
t-Bu
O
NH2
S
O
F
N
S
F
HN
[3]
(a) Drews, J. Science 2000, 287, 1960–1964. (b) Kalgutkar, A. S.;
Jones, R.; Sawant, A. Sulfonamide as an Essential Functional Group in
Drug Design. In Metabolism, Pharmacokinetics and Toxicity of
Functional Groups; Smith, D. A., Ed.; Royal Society of Chemistry:
Cambridge, 2010; pp 210–274.
+
t-Bu
N
F
N
high throughput
evaluations
Br
S
N
N
NH2
45
dabrafenib
Ir Ni
[4]
[5]
(a) Ballatore, C.; Huryn, D. M.; Smith, A. B. III ChemMedChem 2013, 8,
385–395. (b) Şanli, N.; Şanli, S.; Özkan, G.; Denizli, A. J. Braz. Chem.
Soc. 2010, 21, 1952–1960.
57% yield
N
NH2
44
B-Raf kinase inhibitor
antitumor activity
4 steps from commercial
For reports on aryl halide sulfonamidation with Cu and Pd see: (a)
Wolfe, J. P.; Rennels, R. A.; Buchwald, S. L. Tetrahedron, 1996, 52,
7525–7546. (b) Baffoe, J.; Hoe, M Y.; Touré, B. B. Org. Lett. 2010, 12,
1532–1535. (c) He, H.; Wu, Y.-J. Tetrahedron Lett. 2003, 44, 3385–
3386. (d) Nasrollahzadeh, M.; Ehsani, A.; Maham, M. Synlett 2014, 25,
505–508. (e) Yin, J.; Buchwald, S. L. Org. Lett. 2000, 2, 1101–1104. (e)
Burton, G.; Cao, P.; Li, G.; Rivero, R. Org. Lett. 2003, 5, 4373–4376.
(a) Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L. Acc. Chem.
Res. 1998, 31, 805–818. (b) Hartwig, J. F. Acc. Chem. Res. 1998, 31,
852–860.
complete selectivity for C–N bond formation with sulfonamide nucleophile
Figure 3. Synthesis of Dabrafenib.
excellent yields were observed with a range of heteroaryl halide
electrophiles including pyridine, pyrimidine, and pyrazine (25 to
31, 49–90% yield without ligand, 5–73% yield with ligand).
[6]
Importantly, 5-membered ring heterocyclic aryl halides
–
notoriously difficult cross-coupling partners in general – also
provided good yields of the desired C–N coupled products (32
and 33, 62% and 55% yield, respectively). Among this class of
substrates, “ligand-free” conditions were uniformly more
effective. We next turned our attention to the scope of the
sulfonamide nucleophile. Gratifyingly, a number of aryl and
heteroaryl sulfonamides were tolerated (34 to 39, 19–99% yield).
It should also be noted that complete selectivity for bond
formation at the primary sulfonamide moiety versus alternative
N–H sites was observed (39, 91% and 99% yields). Moreover,
efficient coupling was achieved with a range of alkyl sulfonamide
examples (40 to 43, 41–99% yield).
Finally, as a demonstration of this new C–N bond-forming
protocol and its potential application to the preparation of drug-
like molecules, we have undertaken a synthesis of dabrafenib, a
selective B-Raf kinase inhibitor.[15] As shown in Figure 3, the
drug precursor 44 incorporates both an aryl halide and an
[7]
[8]
Fors, B. P.; Watson, D. A.; Biscoe, M. R.; Buchwald, S. L. J. Am. Chem.
Soc. 2008, 130, 13552–13554.
(a) Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 6054–
6058. (b) Corcoran, E. B.; Pirnot, M. T.; Lin, S.; Dreher, S. D.; DiRocco,
D. A.; Davies, I. W.; Buchwald, S. L.; MacMillan, D. W. C. Science 2016,
353, 279–283. (c) Ge, S.; Green, R.; Hartwig, J. F. J. Am. Chem. Soc.
2014, 136, 1617–1627. (d) Lavoie, C. M.; MacQueen, P. M.; Rotta-
Loria, N. L.; Sawatzky, R. S.; Borzenko, A.; Chisholm, A. J.;
Hargreaves, B. K. V.; McDonald, R.; Ferguson, M. J.; Stradiotto, M. Nat.
Commun. 2016, 7, 11073.
[9]
Koo, K.; Hillhouse, G. L. Organometallics 1995, 14, 4421–4423.
[10] (a) Terrett, J. A.; Cuthbertson, J. D.; Shurtleff, V. W.; MacMillan, D. W.
C. Nature 2015, 524, 330–334. (b) Welin, E. R.; Le, C. C.; Arias-
Rotondo, D. M.; McCusker, J. K.; MacMillan, D. W. C. Science 2017,
355, 380–385.
[11] (a) Creutz, S. E.; Lotito, K. J.; Fu, G. C.; Peters, J. C. Science 2012,
338, 647–651. (b) Kainz, Q. M.; Matier, C. D.; Bartoszewicz, A.;
Zultanski, S. L.; Peters, J. C.; Fu, G. C. Science 2016, 351, 681–684.
(c) Hwang, S. J.; Powers, D. C.; Maher, A. G.; Anderson, B. L.; Hadt, R.
G.; Zheng, S.-L.; Chen, Y.-S.; Nocera, D. G. J. Am. Chem. Soc. 2015,
137, 6472–6475. (d) Heitz, D. R.; Tellis, J. C.; Molander, G. A. J. Am.
Chem. Soc. 2016, 138, 12715–12718. (e) Shields, B. J.; Doyle, A. G. J.
Am. Chem. Soc. 2016, 138, 12719–12722.
unprotected anilinic nitrogen on
a
pyrimidine ring.
By
implementing high-throughput evaluation (96-well plate format)
we were able to find optimal conditions for the desired C–N bond
formation (see Supporting Information). Indeed, photosensitized
nickel cross-coupling between 2,6-difluorobenzenesulfonamide
and aryl bromide 44 using ligated nickel provided dabrafenib
(45) in a useful level of efficiency (57% yield) without the
requirement for protection/deprotection sequences.
[12] Ochola, J. R.; Wolf, M. O. Org. Biomol. Chem. 2016, 14, 9088–9092.
[13] The use of Ni(cod)2 for these mechanistic experiments is critical in that
it circumvents the necessary initial reduction of the Ni(II) precatalyst to
Ni(0).
[14] Stern-Volmer experiments rule out the involvement of N-centered
sulfonamidyl radicals generated by a proton-coupled electron transfer
mechanism, see Supporting Information.
Acknowledgement
[15] Rheault, T. R.; Stellwagen, J. C.; Adjabeng, G. M; Hornberger, K. R.;
Petrov, K. G.; Waterson, A. G.; Dickerson, S. H.; Mook, R. A. Jr.;
Laquerre, S. G.; King, A. J.; Rossanese, O. W.; Arnone, M. R.;
Smitheman, K. N.; Kane-Carson, L. S.; Han, C.; Moorthy, G. S.; Moss,
K. G.; Uehling, D. E. ACS Med. Chem. Lett. 2013, 4, 358–362.
The authors thank Professor Stephen Buchwald for helpful
discussions.
This article is protected by copyright. All rights reserved.