Page 3 of 3
ChemComm
second carbon dioxide from D gives E.17 Addition of E to alkyne
3
(a) L. Anastasia and E. Negishi, Org. Lett., 2001, 3, 3111; (b) C.
Yang and S. P. Nolan, Organometallics, 2002, 21, 1020; (c) H.
sulfone (2) forms radical F,18 and homolytic cleavage C-S bond
55
60
65
·
in F affords the desired internal akyne (3) freeing radical PhSO2
DOI: 10.1039/C6CC01632D
(G). The similar radical C(sp3)-C(sp) couplings were reported in
the previous researches.19 Treatment of G with HE provides
PhSO2H freeing radical H, and reduction of [Ru(bpy)32+]* by H
gives Ru(bpy)3+ releasing I.
114; (e) R. A. Batey, M. Shen and A. J. Lough, Org. Lett., 2002, 4,
1411.
K. Sonogashira, Y. Tohda and N. Hagihara, Tetrahedron Lett., 1975,
16, 4467.
(a) R. Chinchilla and C. Najera, Chem. Rev., 2007, 107, 874; (b) H.
Doucet and J.-C. Hierso, Angew. Chem. Int. Ed., 2007, 46, 834.
H. Plenio, Angew. Chem. Int. Ed., 2008, 47, 6954.
S. Park, M. Kim, D. H. Koo and S. Chang, Adv. Synth. Catal., 2004,
346, 1638.
H. N., Borah, D. Prajapati and R. C. Boruah, Synlett, 2005, 2823.
C. González-Arellano, A. Abad, A. Corma, H. García, M. Iglesias and
F. Sánchez, Angew. Chem. Int. Ed., 2007, 46, 1536.
5
4
5
Ru(bpy)3Cl2, HE
iPr2NEt.HBF4
THF/DCM, rt, Ar
Me
O
Me
O
O
O
6
7
X
+
40 W CFL, 8 h
O
N
3a
4a (X = Br)
4b (X = I)
1a
O
yield 40% (X = Br)
51% (X = I)
8
9
Scheme 2 Coupling of 1a with 1-(2-bromoethynyl)benzene (4a) or 1-(2-
10 iodoethynyl)benzene (4b) under the standard photoredox conditions
10 P. Li and L. Wang, Synlett, 2006, 2261.
70 11 L. Feng, F. Liu, P. Sun and J. Bao, Synlett, 2008, 1415.
12 L. Wang, P. Li and Y. Zhang, Chem. Commun., 2004, 514.
13 (a) K. Okuro, M. Furuune, M. Enna, M. Miura and M. Nomura, J.
Org. Chem., 1993, 58, 4716; (b) R. K. Gujadhur, C. G. Bates and D.
Venkataraman, Org. Lett., 2001, 3, 4315; (c) G. A. Slough, V.
Coupling of 1a with 1-(2-bromoethynyl)benzene (4a) or 1-(2-
iodoethynyl)benzene (4b)20 leading to 3a was performed under
the standard photoredox conditions, and the reasonable yields
were afforded (Scheme 2). We investigated application of the
15 synthesized products. Reaction of 3a with trimethylsilyl azide
(TMSN3) in the presence of N-iodosuccinimide (NIS) gave 5
containing azido in 63% yield (Scheme 3), which is useful for
further structural modification.
75
80
85
Krchňák, P. Helquist and S. M. Canham, Org. Lett., 2004, 6, 2909;
(d) D. Ma and F. Liu, Chem. Commun., 2004, 1934; (e) M. B.
Thathagar, J. Beckers and G. Rothenberg, Green Chem., 2004, 6,
215; (f) J.-H. Li, J.-L. Li, D.-P. Wang, S.-F. Pi, Y.-X. Xie, M.-B.
Zhang and X.-C. Hu, J. Org. Chem., 2007, 72, 2053; (g) F. Liu and
D. Ma, J. Org. Chem., 2007, 72, 4844; (h) S. Cacchi, G. Fabrizi, L
and M. Parisi, Org. Lett., 2003, 5, 3843; (i) P. Saejueng, C. G. Bates
and D. Venkataraman, Synthesis, 2005, 1706; (j) H. Rao, H. Fu, Y.
Jiang, Y. Zhao, Adv. Synth. Catal., 2010, 352, 458.
Me
NIS, rt, 36 h
MeCN/DCE
N3
N3
Ph
Me
+
TMSN3
0.44 mmol
O
Ph
3a
0.2 mmol
14 M. Carril, A. Correa and C. Bolm, Angew. Chem. Int. Ed., 2008, 47,
4862.
5 (63% yiled)
15 For selected reviews on visible-light photoredox catalysis, see: (a) C.
K. Prier, D. A. Rankic and D. W. C. MacMillan, Chem. Rev., 2013,
113, 5322; (b) J. M. R. Narayanam and C. R. J. Stephenson, Chem.
Soc. Rev., 2011, 40, 102; (c) T. P. Yoon, M. A. Ischay and J. Du, Nat.
Chem., 2010, 2, 527..
20 Scheme 3 Reaction of 3a with TMSN3 in the presence NIS
In summary, we have developed a novel and efficient method
for visible-light photoredox synthesis of internal alkynes
containing quaternary carbons. The protocol used readily
available N-phthalimidoyl oxalates of tert-alcohols and 1-(2-
25 (arylsulfonyl)ethynyl)benzenes as the starting materials, and the
reactions were performed well at room temperature with good
tolerance of functional groups. Various novel internal alkynes
were prepared by using the present method, but it is difficult to
make them in the previous methods. Therefore, the development
30 of this method enriches synthesis of internal alkynes, and we
believe that it will be of wide applications.
90
95
16 (a) J. Xuan, Z.-G. Zhang and W.-J. Xiao, Angew. Chem. Int. Ed.,
2015, 54, 15632; (b) K. Okada, K. Okubo, N. Morita and M. Oda,
Chem. Lett., 1993, 2021; (c) K. Okada, K. Okubo, N. Morita and M.
Oda, Tetrahedron Lett., 1992, 33, 7377; (d) K. Okada, K. Okamoto,
N. Morita, K. Okubo and M. Oda, J. Am. Chem. Soc., 1991, 113,
9401; (e) M. Zlotorzynska and G. M. Sammis, Org. Lett., 2011, 13,
6264; (f) M. J. Schnermann and L. E. Overman, Angew. Chem. Int.
Ed., 2012, 51, 9576; (g) J. Xie, P. Xu, H. Li, Q. Xue, H. Jin, Y.
Cheng and C. Zhu, Chem. Commun., 2013, 49, 5672; (h) G.
Kachkovskyi, C. Faderl and O. Reiser, Adv. Synth. Catal., 2013, 355,
2240; (i) H. Huang, G. Zhang, L. Gong, S. Zhang and Y. Chen, J. Am.
Chem. Soc., 2014, 136, 2280; (j) H. Huang, G. Zhang and Y. Chen,
Angew. Chem. Int. Ed., 2015, 54, 7872; (k) H. Tan, H. Li, W. Ji and L.
Wang, Angew. Chem. Int. Ed., 2015, 54, 8374; (l) H. Huang, K. Jia
and Y. Chen, Angew. Chem. Int. Ed., 2015, 54, 1881; (m) J. Liu, Q.
Liu, H. Yi, C. Qin, R. Bai, X. Qi, Y. Lan and A. Lei, Angew. Chem.,
Int. Ed., 2014, 53, 502.
100
105
Financial support for this work was provided by the National
Natural Science Foundation of China (Grant Nos. 21372139 and
21221062),
and
Shenzhen
Sci
&
Tech
Bureau
35 (CXB201104210014A).
Notes and references
a
17 G. L. Lackner, K. W. Quasdorf and L. E. Overman, J. Am. Chem.
Soc., 2013, 135, 15342.
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical
Biology (Ministry of Education), Department of Chemistry, Tsinghua
University, Beijing 100084, P. R. China. Fax: 86 10 62781695; E-mail:
40 fuhua@mail.tsinghua.edu.cn
110 18 J. Yang, J. Zhang, L. Qi, C. Hu and Y. Chen, Chem. Commun., 2015,
51, 5275.
b
19. (a) J. Gong and P. L. Fuchs, J. Am. Chem. Soc., 1996, 118, 4486; (b)
G. A. Russell, P. Ngoviwatchai, H. 1. Tashtoush, A. Pla-Dalmau and
R. K. Khanna, J. Am. Chem. Soc., 1988, 110, 3530; (c) J. Xie, S. Shi,
Key Laboratory of Chemical Biology (Guangdong Province), Graduate
School of Shenzhen, Tsinghua University, Shenzhen 518057, P. R. China
†
Electronic supplementary information (ESI) available: General
115
T. Zhang, N. Mehrkens, M. Rudolph and A. S. K. Hashmi, Angew.
Chem. Int. Ed., 2015, 54, 6046.
procedure for visible-light photoredox synthesis of internal alkynes,
45 characterization data for compounds 3a-ac, references, and 1H and 13C
20. H. Huang, G. Zhang, L. Gong, S. Zhang and Y. Chen, J. Am. Chem.
Soc., 2014, 136, 2280.
NMR
spectra
of
compounds
3a-ac.
See
1
2
J. W. Grissom, G. U. Gunawardena, D. Klingenberg and D. Huang,
Tetrahedron, 1996, 52, 6453.
U. Beutler, J. Mazacek, G. Penn, B. Schenkel and D. Wasmuth,
Chimia, 1996, 50, 154.
50
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3