cyclopropanation5,6 of R-hydroxy esters 4, would lend itself
to an enantioselective synthesis of 2-substituted cyclo-
butanones 6, since enantiomerically pure 4 are readily
available by standard methods. Preferential migration of a
single diastereotopic C-C bond of cyclopropanol 5, along
with inversion of configuration at the stereocenter, is
obligatory to achieve high enantioselectivity.3a,b
Table 1
Sharpless asymmetric dihydroxylation of acrylates pro-
vides easy access to the starting R-hydroxy esters.7 Thus,
the known diol 7 (77-80% ee) was subjected to selective
silylation of the primary alcohol to afford 4a in 73% yield
(Scheme 1). The Kulinkovich cyclopropanation of 4a with
Scheme 1
the ethyl Grignard reagent afforded directly the requisite
substrate 5a, albeit in moderate (62%) yield. Although a
higher overall yield can be obtained by protection of the free
hydroxyl group prior to the Kulinkovich cyclopropanation,
the direct conversion of 4a to 5a was chosen for convenience
in the present work. Treatment of 5a with mesyl chloride in
pyridine resulted in facile pinacol rearrangement to afford
6a, [R]25D ) -19.3° (c 0.4, CH2Cl2), in 58% (unoptimized)
yield (Table 1). Since the optical rotation of 6a is known,8
-16.2° (c 1.0, CH2Cl2); lit.8b [R]25 ) -22.5 to -24.1° (c
D
2.0, CHCl3)} allowed us to ascertain that the key rearrange-
ment of 5a f 6a takes place with a high (>90%) level of
chirality transfer. The (S) configuration of cyclobutanone 6a
can be rationalized by the antiperiplanar requirement in the
preferred transition state arising from conformer A. As shown
in the Newman projection, the alternate transition state from
conformer B suffers from nonbonded interactions between
the cyclopropyl ring protons and the substituent CH2-
OTBDPS.9
a comparison of the optical rotation values {lit.8a [R]25
)
D
(4) See, inter alia: 1. addition of vinylketenes to olefins: (a) Danheiser,
R. L.; Martinez-Davila, C.; Sard, H. Tetrahedron 1981, 37, 3943. (b)
Jackson, D. A.; Rey, M.; Dreiding, A. S. HelV. Chim. Acta 1983, 66, 2330.
2. epoxidation of alkylidenecyclopropanes: (c) Salaun, J. R.; Champion,
J.; Conia, J. M. Organic Syntheses; Wiley: New York, 1988; Collect. Vol.
VI, p 320. (d) Cohen, T.; McCullough, D. W. Tetrahedron Lett. 1988, 29,
27. 3. R-arylthio- or alkoxycyclopropylcarbinol-to-cyclobutanone rearrange-
ment: (e) Trost, B. M.; Keeley, D. E.; Bogdanowicz, M. J. J. Am. Chem.
Soc. 1973, 95, 3068. (f) Trost, B. M.; Keeley, D. E.; Arndt, H. C.;
Bogdanowicz, M. J. J. Am. Chem. Soc. 1977, 99, 3088. (g) Cohen, T.; Matz,
J. R. Tetrahedron Lett. 1981, 22, 2455. (h) Wenkert, E.; Arrhenius, T. S.
J. Am. Chem. Soc. 1983, 105, 2030. (i) Krumpolc, M.; Rocek, J. Organic
Syntheses; Wiley: New York, 1990; Collect. Vol. VII, p 114 and references
therein.
To facilitate analysis of the degree of chirality transfer in
the rearrangement process, R-hydroxycyclopropylcarbinols
5 bearing an adjacent stereocenter were next examined, where
the diastereoselectivity of the cyclobutanone formation can
1
be easily determined by the H NMR analysis. Following
the identical reaction sequence, 4b and 5b were prepared
uneventfully starting from ethyl trans-crotonate.10 Ring
expansion of 5b by the action of MsCl gave, as a single
(5) (a) Kulinkovich, O. G.; Sviridov, S. V.; Vasilevskii, D. A.; Pri-
tytskaya, T. S. Zh. Org. Khim. 1989, 25, 2244. (b) Kulinkovich, O. G.;
Sviridov, S. V.; Vasilevskii, D. A.; Savchenko, A. I.; Pritytskaya, T. S. Zh.
Org. Khim. 1991, 27, 294. (c) Kulinkovich, O. G.; Sorokin, V. L.; Kel’in,
A. V. Zh. Org. Khim. 1993, 29, 66.
(6) (a) Lee, J.; Kang, C. H.; Kim, H.; Cha, J. K. J. Am. Chem. Soc.
1996, 118, 291. (b) Lee, J.; Kim, H.; Cha, J. K. J. Am. Chem. Soc. 1996,
118, 4198.
(7) (a) Sharpless, K. B.; Amberg, W.; Bennani, Y. L.; Crispino, G. A.;
Hartung, J.; Jeong, K.-S.; Kwong, H.-L.; Morikawa, K.; Wang, Z.-M.; Xu,
D.; Zhang, X.-L. J. Org. Chem. 1992, 57, 2768. (b) Kolb, H. C.;
VanNieuwenhze, M. S.; Sharpless, K. B. Chem. ReV. 1994, 94, 2483.
(8) (a) Narasaka, K.; Kusama, H.; Hayashi, Y. Bull. Chem. Soc. Jpn.
1991, 64, 1471. (b) Sato, M.; Ohuchi, H.; Abe, Y.; Kaneko, C. Tetrahe-
dron: Asymmetry 1992, 3, 313.
(9) The origin of the high stereoselectivity is reminiscent of Julia’s
stereoselective synthesis of trisubstituted olefins by acid-promoted re-
arrangement of cyclopropylcarbinols: Julia, M.; Julia, S.; Tchen, S.-Y. Bull.
Soc. Chim. Fr. 1961, 1849.
1338
Org. Lett., Vol. 2, No. 9, 2000