Inorganic Chemistry
Article
(29) Tominaga, M.; Suzuki, K.; Kawano, M.; Kusukawa, T.; Ozeki,
T.; Sakamoto, S.; Yamaguchi, K.; Fujita, M. Finite spherical
coordination networks that self-organize from 36 small components.
Angew. Chem., Int. Ed. 2004, 43, 5621−5625.
(30) Li, D.; Zhou, W.; Landskron, K.; Sato, S.; Kiely, C. J.; Fujita,
M.; Liu, T. Viral-capsid-type vesicle-like structures assembled from
M12L24 metal-organic hybrid nanocages. Angew. Chem., Int. Ed. 2011,
50, 5182−5187.
(31) Li, H.; Luo, J.; Liu, T. Modification of the solution behavior of
Pd12L24 metal-organic nanocages via PEGylation. Chem. - Eur. J. 2016,
22, 17949−17952.
(32) Sato, S.; Iida, J.; Suzuki, K.; Kawano, M.; Ozeki, T.; Fujita, M.
Fluorous nanodroplets structurally confined in an organopalladium
sphere. Science 2006, 313, 1273−1276.
(33) Fujita, D.; Suzuki, K.; Sato, S.; Yagi-Utsumi, M.; Yamaguchi, Y.;
Mizuno, N.; Kumasaka, T.; Takata, M.; Noda, M.; Uchiyama, S.;
Kato, K.; Fujita, M. Protein encapsulation within synthetic molecular
hosts. Nat. Commun. 2012, 3, 1093.
thesis, gelation and unusualproperties. New J. Chem. 2015, 39, 639−
649.
́
(48) Mebrouk, K.; Debnath, S.; Fourmigue, M.; Camerel, F.
Photothermal control of the gelation properties of nickel bis-
(dithiolene) metallogelators under near-infrared irradiation. Langmuir
2014, 30, 8592−8597.
(49) Harris, K. R. The fractional Stokes-Einstein equation:
Application to Lennard-Jones, molecular, and ionic liquids. J. Chem.
Phys. 2009, 131, 054503.
(50) Ullmann, G.; Phillies, G. D. J. Implications of the failure of the
Stokes-Einstein equation for measurements with QELSS of polymer
adsorption by small particles. Macromolecules 1983, 16, 1947−1949.
(51) Boekhoven, J.; Poolman, J. M.; Maity, C.; Li, F.; van der Mee,
L.; Minkenberg, C. B.; Mendes, E.; van Esch, J. H.; Eelkema, R.
Catalytic control over supramolecular gel formation. Nat. Chem. 2013,
5, 433−437.
(52) Crutchfield, C. A.; Harris, D. J. Molecular mass estimation by
PFG NMR spectroscopy. J. Magn. Reson. 2007, 185, 179−182.
(53) Virk, A. S.; Torres, A. M.; Willis, S. A.; Price, W. S. NMR
diffusion studies of spherical molecules: tetramethylsilane and
buckyballs. J. Mol. Liq. 2016, 214, 157−161.
́ ́
(34) Leenders, S. H. A. M.; Durr, M.; Ivanovic-Burmazovic, I.; Reek,
̈
J. N. H. Gold functionalized platinum M12L24-nanospheres and their
application in cyclization reactions. Adv. Synth. Catal. 2016, 358,
1509−1518.
̈
(54) Tong, H.; Hong, Y.; Dong, Y.; Haußler, M.; Lam, J. W. Y.; Li,
Z.; Guo, Z.; Guo, Z.; Tang, B. Z. Fluorescent “light-up” bioprobes
based on tetraphenylethylene derivatives with aggregation-induced
emission characteristics. Chem. Commun. 2006, 3705−3707.
(55) La, D. D.; Bhosale, S. V.; Jones, L. A.; Bhosale, S. V.
Tetraphenylethylene-based AIE-active probes for sensing applications.
ACS Appl. Mater. Interfaces 2018, 10, 12189−12216.
(35) Jiang, F.; Wang, N.; Du, Z.; Wang, J.; Lan, Z.; Yang, R.
Thiophene-coated functionalized M12L24 spheres: Synthesis, charac-
terization, and electrochemical properties. Chem. - Asian J. 2012, 7,
2230−2234.
(36) George, M.; Weiss, R. G. Molecular organogels. Soft matter
comprised of low-molecular-mass organic gelators and organic liquids.
Acc. Chem. Res. 2006, 39, 489−497.
(56) Zhang, T.; Zhang, G.-L.; Yan, Q.-Q.; Zhou, L.-P.; Cai, L.-X.;
Guo, X.-Q.; Sun, Q.-F. Self-assembly of a tetraphenylethylene-based
capsule showing both aggregation-and encapsulation-induced emis-
sion properties. Inorg. Chem. 2018, 57, 3596−3601.
(57) Li, H.; Fan, J.; Peng, X. Colourimetric and fluorescent probes
for the optical detection of palladium ions. Chem. Soc. Rev. 2013, 42,
7943−7962.
(58) Zuo, Y.; Wang, X.; Yang, Y.; Huang, D.; Yang, F.; Shen, H.;
Wu, D. Facile preparation of pH-responsive AIE-active POSS
dendrimers for the detection of trivalent metal cations and acid
gases. Polym. Chem. 2016, 7, 6432−6436.
̌
́
̈
(37) Zinic, M.; Vogtle, F.; Fages, F. Cholesterol-based gelators. Top.
Curr. Chem. 2005, 256, 39−76.
́
̈
(38) Svobodova, H.; Noponen, V.; Kolehmainen, E.; Sievanen, E.
Recent advances in steroidal supramolecular gels. RSC Adv. 2012, 2,
4985−5007.
(39) Wang, X.-J.; Xing, L.-B.; Cao, W.-N.; Li, X.-B.; Chen, B.; Tung,
C.-H.; Wu, L.-Z. Organogelators based on TTF supramolecular
assemblies: Synthesis, characterization, and conductive property.
Langmuir 2011, 27, 774−781.
(40) Wang, G.; Wang, W.; Miao, R.; Shang, C.; He, M.; Peng, H.;
He, G.; Fang, Y. A perylene bisimide derivative with pyrene and
cholesterol as modifying structures: synthesis and fluorescence
behavior. Phys. Chem. Chem. Phys. 2016, 18, 12221−12230.
(41) Ghosh, K.; Panja, A.; Panja, S. Cholesterol appended bis-1,2,3-
triazoles as simple supramolecular gelators for the naked eye detection
of Ag+, Cu2+ and Hg2+ ions. New J. Chem. 2016, 40, 3476−3483.
(42) Kuo, S.-Y.; Liu, C.-Y.; Balamurugan, R.; Zhang, Y.-S.; Fitriyani,
S.; Liu, J. H. Dual-responsive ALS-type organogelators based on
azobenzene-cholesteryl conjugates and their self-assemblies. New J.
Chem. 2017, 41, 15555−15563.
(43) Wang, T.; Yu, X.; Li, Y.; Ren, J.; Zhen, X. Robust, self-healing,
and multistimuli-responsive supergelator for the visual recognition
and separation of short-chain cycloalkanes and alkanes. ACS Appl.
Mater. Interfaces 2017, 9, 13666−13675.
(44) Wang, C.; Chen, Q.; Sun, F.; Zhang, D.; Zhang, G.; Huang, Y.;
Zhao, R.; Zhu, D. Multistimuli responsive organogels based on a new
gelator featuring tetrathiafulvalene and azobenzene groups: reversible
tuning of the gel-sol transition by redox reactions and light irradiation.
J. Am. Chem. Soc. 2010, 132, 3092−3096.
(59) Jadhav, T.; Choi, J. M.; Shinde, J.; Lee, J. Y.; Misra, R.
Mechanochromism and electroluminescence in positional isomers of
tetraphenylethylene substituted phenanthroimidazoles. J. Mater.
Chem. C 2017, 5, 6014−6020.
(60) Piepenbrock, M.-O. M.; Lloyd, G. O.; Clarke, N.; Steed, J. W.
Metal-and anion-binding supramolecular gels. Chem. Rev. 2010, 110,
1960−2004.
̈
̈
(61) Loffler, S.; Lubben, J.; Krause, L.; Stalke, D.; Dittrich, B.;
Clever, G. H. Triggered exchange of anionic for neutral guests inside a
cationic coordination cage. J. Am. Chem. Soc. 2015, 137, 1060−1063.
(62) Freye, S.; Michel, R.; Stalke, D.; Pawliczek, M.; Frauendorf, H.;
Clever, G. H. Template control over dimerization and guest selectivity
of interpenetrated coordination cages. J. Am. Chem. Soc. 2013, 135,
8476−8479.
́
(63) Freye, S.; Hey, J.; Torras-Galan, A.; Stalke, D.; Herbst-Irmer,
R.; John, M.; Clever, G. H. Allosteric binding of halide anions by a
new dimeric interpenetrated coordination cage. Angew. Chem., Int. Ed.
2012, 51, 2191−2194.
(64) Bandi, S.; Pal, A. K.; Hanan, G. S.; Chand, D. K.
Stoichiometrically controlled revocable self-assembled “spiro” versus
quadruple-stranded “double-decker” type coordination cages. Chem. -
Eur. J. 2014, 20, 13122−13126.
(45) Mebrouk, K.; Debnath, S.; Fourmigue, M.; Camerel, F.
Photothermal control of the gelation properties of nickel bis-
(dithiolene) metallogelators under near-infrared irradiation. Langmuir
2014, 30, 8592−8597.
(46) Bandela, A. K.; Hinge, V. K.; Yarramala, D. S.; Rao, C. P.
Versatile, reversible, and reusable gel of a monocholesteryl conjugated
calix[4]arene as functional material to store and release dyes and
drugs including doxorubicin, curcumin, and tocopherol. ACS Appl.
Mater. Interfaces 2015, 7, 11555−11566.
(47) Wu, Y.; Liu, K.; Chen, X.; Chen, Y.; Zhang, S.; Peng, J.; Fang,
Y. A novel calix[4]arene-based dimeric-cholesteryl derivative: syn-
I
Inorg. Chem. XXXX, XXX, XXX−XXX