Thiyl Radical Mediated Racemization of Benzylic Amines
FULL PAPER
e) H.-S. Dang, B. P. Roberts, D. A. Tocher, Org. Biomol. Chem.
2003, 1, 4073–4084; f) H.-S. Dang, B. P. Roberts, J. Chem. Soc.,
Perkin Trans. 1 1998, 67–75; g) H.-S. Dang, B. P. Roberts, J.
Chem. Soc., Perkin Trans. 1 2002, 1161–1170.
For a review, see: B. P. Roberts, Chem. Soc. Rev. 1999, 28, 25–
35.
a) M. S. Akhlaq, H.-P. Schuchmann, C. von Sonntag, Int. J.
Radiat. Biol. 1987, 51, 91–102; b) Y. Cai, B. P. Roberts, Chem.
Commun. 1998, 1145–1146; c) H.-S. Dang, B. P. Roberts, Tetra-
hedron Lett. 2000, 41, 8595–8599; d) H.-S. Dang, B. P. Roberts,
D. A. Tocher, J. Chem. Soc., Perkin Trans. 1 2001, 2452–2461.
a) M. P. Bertrand, S. Escoubet, S. Gastaldi, V. I. Timokhin,
Chem. Commun. 2002, 216–217; b) S. Escoubet, S. Gastaldi,
V. I. Timokhin, M. P. Bertrand, D. Siri, J. Am. Chem. Soc.
2004, 126, 12343–12352.
J. Blagg, S. G. Davis, C. L. Goodfellow, K. H. Sutton, J. Chem.
Soc., Perkin Trans. 1 1987, 1805–1812.
J. F.-H. Wang, K. K. Chan, J. Labelled Compd. Radiopharm.
1996, 38, 105–116.
J. Juarez, D. Gnecco, A. Galindo, R. G. Enriquez, C. Maraz-
ano, W. F. Reynolds, Tetrahedron: Asymmetry 1997, 8, 203–
206.
G. W. Dombrowski, J. P. Dinnocenzo, S. Farid, J. L. Goodman,
I. R. Gould, J. Org. Chem. 1999, 64, 427–431.
a) T. J. Burkey, A. L. Castellano, D. Griller, F. P. Lossing, J.
Am. Chem. Soc. 1983, 105, 4701–4703; b) D. D. M. Wayner,
J. J. Dannenberg, D. Griller, Chem. Phys. Lett. 1986, 131, 189–
191.
31G(d) level to determine the nature of the located stationary
points. The spin contamination was low for all radical species
(maximum value for ϽS2Ͼ = 0.772). In all cases vibrational fre-
quencies were scaled by a factor of 0.9804 when considering the
zero-point energy.[34] The BDE values at 298 K were calculated by
standard statistical thermodynamic methods using the above-men-
tioned frequencies. The single-point energies were then calculated
at the UB3P86/6-311++G(d,p) level of theory. In order to obtain
more accurate results, some BDEs were calculated using the G3B3
and G3B3(MP2) composite methods.[35] Natural bond orbital in-
teractions were calculated using the NBO 3.1[26] method included
in the Gaussian 03 package.
[8]
[9]
[10]
Supporting Information (see footnote on the first page of this arti-
cle): Plot of ee/ee0 at different concentrations for amines 1 and 2.
Plots of ln(ee/ee0) vs. time for amines 1 and 2. Estimated rate con-
stants for the racemization of amines 1 and 2.
[11]
[12]
[13]
Acknowledgments
[14]
[15]
The authors express their deep gratitude to Dr. Vitaliy Timokhin
for his very valuable assistance and for rereading the manuscript,
and they thank Dr. S. Marque for helpful discussions.
[16]
An accurate method for the theoretical prediction of the abso-
lute standard redox potentials of a series of α-amino radicals
was published while this work was being completed. The values
calculated in solution in acetonitrile, at the B3LYP/6-
311++G(2df,2p)//B3LYP/6-31G(d) level of theory using the
PCM solvation model, range from –1.5 to 0.36 V [E° = –0.82 V
[1] E. Ebbers, G. J. A. Ariaans, J. P. M. Houbiers, A. Brugginks,
B. Zwanenburg, Tetrahedron 1997, 53, 9417–9476.
[2] a) B. Schnell, K. Faber, W. Kroutil, Adv. Synth. Catal. 2003,
345, 653–666; b) T. Yoshimura, N. Esaki, J. Biosci. Bioeng.
2003, 96, 103–109.
[3] a) F. Funke, S. Liang, A. Kramer, R. Sturmer, A. Hoehn
(BASF), EP 1215197, 2002 (Chem. Abstr. 2002, 137, 48866); b)
H. Riechers, J. Simon, A. Höhn, A. Kramer, F. Funke, W. Sie-
gel, C. Nübling (BASF), US 6160178, 2000 (Chem. Abstr. 2000,
132, 308056); c) H. Riechers, J. Simon, A. Höhn, A. Kramer,
F. Funke, W. Siegel, C. Nübling (BASF), US 6153797, 2000
(Chem. Abstr. 2000, 132, 236800); d) T. Inoue, Y. Hirayama
(Nagase & Co, Ltd), JP 10072410, 1998 (Chem. Abstr. 1998,
128, 217182).
[4] a) T. Inoue, Y. Hirayama (Nagase & Co, Ltd), WO 9735833,
1997 (Chem. Abstr. 1997, 127, 307157); b) N. Murakami, K.
Sakai, T. Tobiyama (Yamakawa Chemical Industry Co, Ltd),
JP 2000297066, 2000 (Chem. Abstr. 2000, 133, 296269); c) J. A.
Paul, G. A. Potter (Chiroscience, Ltd), WO 9721662, 1997
(Chem. Abstr. 1997, 127, 121558); d) M. Valeriano, P. Daverio,
S. Bianchi (TEVA Pharmaceutical Industries, Ltd), US
2004024011, 2004 (Chem. Abstr. 2004, 140, 146119).
[5] a) J. S. M. Samec, A. H. Ell, J. E. Bäckvall, Chem. Commun.
2004, 2748–2749; b) J. S. M. Samec, A. H. Ell, J. E. Bäckvall,
Chem. Eur. J. 2005, 11, 2327–2334. Combined with kinetic en-
zymatic resolution, this racemization process leads to enantio-
pure benzylic amides, see: c) O. Pamies, A. H. Ell, J. S. M. Sa-
mec, N. Hermanns, J. E. Bäckvall, Tetrahedron Lett. 2002, 43,
4699–4702; d) J. Paetzold, J. E. Bäckvall, J. Am. Chem. Soc.
2005, 127, 17620–17621.
[6] a) D. Crich, in Organosulfur Chemistry: Synthetic Aspects (Ed.:
P. Page), Academic Press, London, 1995, chapter 2; b) C. Chat-
gilialoglu, M. P. Bertrand, C. Ferreri, in S-Centered Radicals
(Ed.: Z. B. Alfassi), Wiley, New York, 1999, chapter 11; c)
M. P. Bertrand, C. Ferreri, in Radicals in Organic Synthesis,
vol. 2 (Eds.: P. Renaud, M. Sibi), Wiley-VCH, New York, 2001,
chapter 5.5.
·
for the radical issued from 1; –0. 66 V for H2N–CH2 ; –1.47 V
·
·
for (Me)2N–CH2 ; +0.36 V for AcNHCH2 ]; see: Y. Fu, Y. Liu,
Y.-M. Wang, Q.-X. Guo, J. Am. Chem. Soc. 2005, 127, 7227–
7234.
[17]
[18]
Y.-R. Luo, in Handbook of Bond Dissociation Energies in Or-
ganic Compounds, CRC Press, Boca Raton, 2003, pp. 73 and
85.
Imine 6 was formed as a 90:10 mixture of (E)/(Z) isomers and
1
was characterized by H NMR spectroscoy by the quadruplet
of the proton α to nitrogen atom in the amine moiety at δ =
4.83 and 4.42 ppm, respectively; see: D. R. Boyd, W. B. Jen-
nings, L. C. Waring, J. Am. Chem. Soc. 1986, 51, 992–995.
a) T. J. Burkey, A. L. Castelhano, D. Griller, F. P. Lossing, J.
Am. Chem. Soc. 1983, 105, 4701–4703; b) see ref.[17], p. 75.
a) D. D. M. Wayner, K. B. Clark, A. Rauk, D. Yu, D. A. Arm-
strong, J. Am. Chem. Soc. 1997, 119, 8925–8932; b) J. Lalevée,
X. Allonas, J.-P. Fouassier, J. Am. Chem. Soc. 2002, 124, 9613–
9621.
[19]
[20]
[21]
[22]
[23]
Y. Feng, J.-T. Wang, H. Huang, Q.-X. Guo, J. Chem. Inf. Com-
put. Sci. 2003, 43, 2005–2013.
C. J. Parkinson, P. M. Mayer, L. Radom, J. Chem. Soc., Perkin
Trans. 2 1999, 2305–2313.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr, T. Vreven,
K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tom-
asi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega,
G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratch-
ian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gom-
perts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C.
Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A.
Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dap-
prich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick,
A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q.
Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov,
[7] a) B. P. Roberts, T. M. Smits, Tetrahedron Lett. 2001, 42, 137–
140; b) B. P. Roberts, T. M. Smits, Tetrahedron Lett. 2001, 42,
3663–3666; c) Y. Cai, H.-S. Dang, B. P. Roberts, J. Chem. Soc.,
Perkin Trans. 1 2002, 2449–2458; d) H.-S. Dang, B. P. Roberts,
J. Sekhon, T. M. Smits, Org. Biomol. Chem. 2003, 1, 1330–1341;
Eur. J. Org. Chem. 2006, 3242–3250
© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
3249