NJC
Paper
13 L. Yu, H. Chen, Z. Wen, M. Jin, Z. Ma, X. Ma, Y. Sang,
M. Chen and Y. Li, Catal. Today, 2021, 367, 9–15.
14 Z. Yuan, B. Liu, P. Zhou, Z. Zhang and Q. Chi, Catal. Sci.
Technol., 2018, 8, 4430–4439.
15 H. Liu, X. Cao, J. Wei, W. Jia, M. Li, X. Tang, X. Zeng, Y. Sun,
T. Lei, S. Liu and L. Lin, ACS Sustainable Chem. Eng., 2019, 7,
7812–7822.
16 Q. Ke, Y. Jin, F. Ruan, M. N. Ha, D. Li, P. Cui, Y. Cao,
H. Wang, T. Wang, V. N. Nguyen, X. Han, X. Wang and
P. Cui, Green Chem., 2019, 21, 4313–4318.
17 R. Fang, R. Luque and Y. Li, Green Chem., 2016, 18, 3152–3157.
18 S. Biswas, B. Dutta, A. Mannodi-Kanakkithodi, R. Clarke,
W. Song, R. Ramprasad and S. L. Suib, Chem. Commun.,
2017, 53, 11751–11754.
19 Y. Yan, K. Li, J. Zhao, W. Cai, Y. Yang and J. M. Lee, Appl.
Catal., B, 2017, 207, 358–365.
20 C. A. Antonyraj, B. Kim, Y. Kim, S. Shin, K.-Y. Lee, I. Kim
and J. K. Cho, Catal. Commun., 2014, 57, 64–68.
21 Y. Liu, T. Gan, Q. He, H. Zhang, X. He and H. Ji, Ind. Eng.
Chem. Res., 2020, 59, 4333–4337.
22 J. Artz, S. Mallmann and R. Palkovits, ChemSusChem, 2015,
8, 672–679.
23 Y. Ren, Z. Yuan, K. Lv, J. Sun, Z. Zhang and Q. Cui, Green
Chem., 2018, 20, 4946–4956.
possess medium acid sites and have good reducibility which
may favor the one-step reaction of fructose to DFF. Then, a-
MoO3 was applied as a bifunctional catalyst for DFF production
under atmospheric air. Under optimum reaction conditions,
high DFF yields of 97.2% and 78.3% were obtained by using
HMF and fructose as reactants, respectively. Furthermore, a
plausible reaction pathway was proposed for a-MoO3-catalyzed
oxidation of HMF to DFF based on the experimental and
catalyst characterization results. The lattice O2À on a-MoO3
serves as the active sites to realize the oxidation of the hydroxy
group in HMF. The consumption of the lattice O2À on a-MoO3
is replenished by the chemisorbed molecular oxygen during the
reaction and then a-MoO3 is involved in the next catalytic cycle
process. Additionally, the a-MoO3 nanobelts exhibited high
stability and could be used at least five times without obvious
loss in their catalytic activity. In brief, a-MoO3 is an easily-
prepared, eco-friendly, low cost and highly efficienct catalyst for
one-step conversion of fructose to DFF under atmospheric air.
Conflicts of interest
There are no conflicts to declare.
24 G. Lv, H. Wang, Y. Yang, T. Deng, C. Chen, Y. Zhu and
X. Hou, ACS Catal., 2015, 5, 5636–5646.
25 A. Takagaki, M. Takahashi, S. Nishimura and K. Ebitani,
ACS Catal., 2011, 1, 1562–1565.
26 Z.-Z. Yang, J. Deng, T. Pan, Q.-X. Guo and Y. Fu, Green
Chem., 2012, 14, 2986–2989.
Acknowledgements
This work is supported by the National Natural Science Foun-
dation of China (21805065). We also thank the support from
Anhui Province Key Laboratory of Advanced Catalytic Materials
and Reaction Engineering (PA2020GDSK0064).
27 Z. Yang, W. Qi, R. Su and Z. He, Energy Fuels, 2017, 31,
533–541.
28 M. Cui, R. Huang, W. Qi, R. Su and Z. He, RSC Adv., 2017, 7,
7560–7566.
29 Z. Yang, W. Qi, R. Su and Z. He, ACS Sustainable Chem. Eng.,
2017, 5, 4179–4187.
30 J. Zhao, A. Jayakumar, Z.-T. Hu, Y. Yan, Y. Yang and J.-
M. Lee, ACS Sustainable Chem. Eng., 2018, 6, 284–291.
31 J. Zhao, A. Jayakumar and J.-M. Lee, ACS Sustainable Chem.
Eng., 2018, 6, 2976–2982.
References
1 B. Liu and Z. Zhang, ChemSusChem, 2016, 9, 2015–2036.
2 Y. Wan and J.-M. Lee, ACS Catal., 2021, 11, 2524–2560.
3 P. Prabhu, Y. Wan and J.-M. Lee, Matter, 2020, 4, 1162–1177.
4 Z. Zhang and G. W. Huber, Chem. Soc. Rev., 2018, 47,
1351–1390.
5 T. Xiang, X. Liu, P. Yi, M. Guo, Y. Chen, C. Wesdemiotis,
J. Xu and Y. Pang, Polym. Int., 2013, 62, 1517–1523.
6 D. T. Richter and T. D. Lash, Tetrahedron Lett., 1999, 40,
6735–6738.
32 J. Chen, Y. Guo, J. Chen, L. Song and L. Chen, Chem-
CatChem, 2014, 6, 3174–3181.
33 J. Zhao, X. Chen, Y. Du, Y. Yang and J.-M. Lee, Appl. Catal.,
A, 2018, 568, 16–22.
34 G. Lv, H. Wang, Y. Yang, T. Deng, C. Chen, Y. Zhu and
X. Hou, Green Chem., 2016, 18, 2302–2307.
35 J. Zhao, Y. Yan, Z.-T. Hu, V. Jose, X. Chen and J.-M. Lee,
Catal. Sci. Technol., 2020, 10, 4179–4183.
36 W. Hou, Q. Wang, Z. Guo, J. Li, Y. Zhou and J. Wang, Catal.
Sci. Technol., 2017, 7, 1006–1016.
7 A. S. Benahmed-Gasmi, P. Frere, M. Jubault, A. Gorgues,
J. Cousseau and B. Garrigues, Synth. Met., 1993, 56,
1751–1755.
8 K. T. Hopkins, W. D. Wilson, B. C. Bender, D. R. McCurdy,
J. Edwin Hall, R. R. Tidwell, A. Kumar, M. Bajic and
D. W. Boykin, J. Med. Chem., 1998, 41, 3872–3878.
9 T. El-Hajj, J.-C. Martin and G. Descotes, J. Heterocycl. Chem.,
1983, 20, 233–235.
37 Q. Lei, J. Li, N. Cao, Z. Song, C.-L. Liu and W.-S. Dong, Mol.
Catal., 2020, 487, 110892.
10 A. S. Amarasekara, D. Green and E. McMillan, Catal. Com-
mun., 2008, 9, 286–288.
38 Z. Chen, S. Liao, L. Ge, P. N. Amaniampong, Y. Min, C. Wang,
K. Li and J.-M. Lee, Chem. Eng. J., 2020, 379, 122284.
39 G. Liang, Y. Yang, Z. Huang, F. Mo, X. Li, Q. Yang, D. Wang,
H. Li, S. Chen and C. Zhi, Adv. Mater., 2020, 32, 1907802.
11 M. Cui, R. Huang, W. Qi, R. Su and Z. He, Catal. Today,
2019, 319, 121–127.
12 T. El-Hajj, J. C. Martin and G. Descotes, J. Heterocycl. Chem.,
1983, 20, 233–235.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021
New J. Chem.