Journal of the American Chemical Society
Communication
19
decomposition of the substrate, while Noyori reduction gave
a ca. 1:1 mixture of 5 and 22 in poor yield. Finally, we were
pleased to find Luche reduction as a suitable mean for the
selective reduction, affording a ca. 5:1 mixture of 5 and 22. This
mixture underwent Dieckmann condensation in the presence of
NaOMe in MeOH, followed by a spontaneous hemiketaliza-
tion, furnishing a synthetic sample of the proposed structure of
fusarisetin A (1) in 41% yield over 2 steps, together with a small
portion of its 5-epimer (23). The physical properties o3f
synthetic 1 matched those reported for the natural material,
Ngamrojnavanich, N.; Sriubolmas, N.; Chaichit, N.; Ohta, T.
Tetrahedron Lett. 2007, 48, 651.
(5) Systematic studies on intramolecular D-A reaction for synthesiz-
ing bicyclic systems: (a) Roush, W. R.; Hall, S. E. J. Am. Chem. Soc.
1
1
981, 103, 5200. (b) Roush, W. R.; Peseckis, S. M. J. Am. Chem. Soc.
981, 103, 6696. (c) Roush, W. R.; Gillis, H. R.; Ko, A. I. J. Am. Chem.
Soc. 1982, 104, 2269. (d) Roush, W. R.; Gillis, H. R. J. Org. Chem.
982, 47, 4825.
6) Elegant syntheses of decalin natural product equisetin using D-A
1
(
reaction: (a) Burke, L. T.; Dixon, D. J.; Ley, S. V.; Rodríguez, F. Org.
Lett. 2000, 2, 3611. (b) Burke, L. T.; Dixon, D. J.; Ley, S. V.;
Rodríguez, F. Org. Biomol. Chem. 2005, 3, 274.
27
except for the sign of its optical rotation {synthetic: [α]
=
D
2
5
(7) Excellent review ofD-A reaction in total synthesis: Nicolaou, K.
−
88.0 (c = 0.15 in MeOH); natural: [α] = +84.6 (c = 0.2 in
D
C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G. Angew. Chem.,
Int. Ed. 2002, 41, 1668.
MeOH)}. Thus, the absolute configuration of naturally
occurring 1 was reassigned as that of 24 based on our total
synthesis.
(
8) Inoue, A.; Kanematsu, M.; Yoshida, M.; Shishido, K. Tetrahedron
Lett. 2010, 51, 3966.
9) (a) Nicolaou, K. C.; Daines, R. A.; Chakraborty, T. K.; Ogawa, Y.
In conclusion, we developed an efficient synthetic strategy
for the total synthesis of the enantiomer of fusarisetin A, a
newly discovered acinar morphogenesis inhibitor possessing an
intricate structure, and reassigned the absolute configuration of
the natural product through our synthesis. The synthesis
featured an intramolecular Diels−Alder reaction, a Pd-mediated
O→C allylic rearrangement, a chemoselective Wacker
oxidation, and a Dieckmann condensation/hemiketalization
cascade. The reported synthetic strategy and methods are
expected to be applicable to the construction of other
structurally or biosynthetically related natural products, as
well as designed analogues of fusarisetin A, and thus to facilitate
the exploration of its mechanism of action on a molecular level.
(
J. Am. Chem. Soc. 1988, 110, 4685. (b) Amans, D.; Bellosta, V.; Cossy,
J. Angew. Chem., Int. Ed. 2006, 45, 5870.
(10) Hayashi, Y.; Narasaka, K. Chem. Lett. 1998, 313.
(11) Dicarbonyl/BF2 complexcould possibly be generated in situ
from BF ·OEt and dicarbonyl substrateand serve as an activated
3 2
intermediate for D-A reaction. Preparationand characterization of such
class of complex: Maeda, H.; Yohei, H.; Nakanishi, T. J. Am. Chem. Soc.
2
007, 129, 13661.
(12) (a) Masamune, S.; Hayase, Y.; Schilling, W.; Chan, W. K.; Bates,
G. S. J. Am. Chem. Soc. 1977, 99, 6756. (b) Booth, P. M.; Fox, C. M. J.;
Ley, S. V. Tetrahedron Lett. 1983, 24, 5143.
(13) CCDC-854787 and CCDC-854788 contain the supplementary
crystallographic data for 16 and 23, respectively, and are available free
ASSOCIATED CONTENT
■
(14) Mechanistically similarPd-catalyzed O→C allylic migration
*
S
Supporting Information
reactions: Mohr, J. T.; Stoltz, B. M. Chem. Asian J. 2007, 2, 1476
and referencestherein.
(15) Hosokawa, T.; Kono, T.; Uno, T.; Murahashi, S.-I. Bull. Chem.
Soc. Jpn. 1986, 59, 2191.
(16) White, K. N.; Konopelski, J. P. Org. Lett. 2005, 7, 4111.
(
17) Wipf, P.; Kim, Y.; Goldstein, D. M. J. Am. Chem. Soc. 1995, 117,
AUTHOR INFORMATION
1
1106.
18) Comprehensivereview: Corey, E. J.; Helal, C. J. Angew. Chem.,
Int. Ed. 1998, 37, 1986.
19) Fujii, A.; Hashiguchi, S.; Uematsu, N.; Ikariya, T.; Noyori, R. J.
Am. Chem. Soc. 1996, 118, 2521.
(
(
Author Contributions
These authors contributed equally.
†
ACKNOWLEDGMENTS
■
This paper is dedicated to Prof. K. C. Nicolaou. We thank
Zhunzhun Yu and Shuhang Wu for technical contributions,
Prof. Chunyang Cao for NMR assistance, and Dr. D. J.
Edmonds and Prof. Dawei Ma for helpful discussions. Financial
support was provided by State Key Laboratory of Bioorganic
and Natural Products and Shanghai Institute of Organic
Chemistry, Chinese Academy of Sciences.
REFERENCES
■
(
1) (a) Gordaliza, M. Clin. Transl. Oncol. 2007, 9, 767. (b) Newman,
D. J.; Cragg, G. M. J. Nat. Prod. 2007, 70, 461.
(
(
2) Hulkower, K. I.; Herber, R. L. Pharmaceutics 2011, 3, 107.
3) Jang, J.-H.; Asami, Y.; Jang, J.-P.; Kim, S.-O.; Moon, D. O.; Shin,
K.-S.; Hashizume, D.; Muroi, M.; Saito, T.; Oh, H.; Kim, B. Y.; Osada,
H.; Ahn, J. S. J. Am. Chem. Soc. 2011, 133, 6865.
(
4) Selected natural products that are structurally related to
fusarisetin A: (a) Oh, H.; Swenson, D. C.; Gloer, J. B. Tetrahedron
Lett. 1998, 39, 7633. (b) Horn, W. S.; Simmonds, M. S. J.; Schwartz, R.
E.; Blaney, W. M. Tetrahedron 1995, 51, 3969. (c) Pornpakakul, S.;
Roengsumran, S.; Deechangvipart, S.; Petsom, A.; Muangsin, N.;
9
23
dx.doi.org/10.1021/ja211444m | J. Am. Chem.Soc. 2012, 134, 920−923