13C and 1H NMR of methylacetophenones and methyl benzoates
851
9. For instance: (a) Wepster BM. Recl. Trav. Chim. Pays-Bas 1957;
76: 335; (b) Yates K, Scott BF. Can. J. Chem. 1963; 41: 2320;
(c) Krueger PJ. Can. J. Chem. 1973; 51: 1363.
10. (a) Zaitsev BA. Izv. Akad. Nauk SSSR, Ser. Khim. 1974; 780;
(b) Lumbroso H, Liegeois C, Goethals G, Uzan R. Z. Phys. Chem.
(Wiesbaden) 1983; 138: 167.
11. Kukol A, Strehle F, Thielking G, Gru¨tzmacher HF. Org. Mass
Spectrom. 1993; 28: 1107.
12. Decouzon M, Ertl P, Exner O, Gal J-F, Maria P-C. J. Am. Chem.
Soc. 1993; 115: 12 071.
13. Fiedler P, Exner O. J. Phys. Org. Chem. 1998; 11: 141.
14. (a) Decouzon M, Gal J-F, Maria P-C, Bo¨hm S, Jime´nez P,
Roux MV, Exner O. New J. Chem. 1997; 21: 561; (b) Otyepkova´ E,
Neveˇcˇna´ T, Kulha´nek J, Exner O. J. Phys. Org. Chem. 2003; 16:
721.
using spectral width 30 kHz, acquisition time 1 s and zero
filling to 128 K data points before Fourier transformation.
Characteristic chemical shifts, relative intensities and known
substituent effects were used for structural assignment of
carbon signals. In ambiguous cases we confirmed the assign-
ment with the heterocorrelated 2D-1H,13C-HMQC spectra.
The 1JꢁC-7,C-1ꢂ couplings in 1, 2 and 8 were determined
from 1D-INADEQUATE spectra31 using following parame-
ters: spectral width ¾27 kHz, 13C transmitter pulses 7.25 µs
°
°
(90 ) and 14.5 µs (180 ), relaxation delay d1 D 5.0–7.0 s,
delay d2 D 5.0 ms calculated for 1J(C,C) D 50 Hz, broadband
proton decoupling, acquisition time 2–2.5 s and number of
scans 4000–7000. Zero filling to 256 K data points and an
exponential weighing function with line broadening 0.2 Hz
were used for data processing.
15. Bo¨hm S, Exner O. Chem. Eur. J. 2000; 6: 3391.
´
16. Cısarˇova´ I, Podlaha J, Bo¨hm S, Exner O. Collect. Czech. Chem.
Commun. 2000; 65: 216.
17. Kulha´nek J, Bo¨hm S, Pala´t K Jr, Exner O. J. Phys. Org. Chem. 2004;
17: in press.
18. Hnyk D, Borisenko KB, Samdal S, Exner O. Eur. J. Org. Chem.
2000; 2063.
19. (a) Montaudo G, Caccamese S, Librando V, Maravigna P. Gazz.
Chim. Ital. 1975; 105: 85; (b) Jin O, Wildman TA. J. Phys. Chem.
1991; 95: 20.
20. (a) Baliah V, Aparajithan K. Tetrahedron 1963; 19: 2177;
(b) Benassi R, Iarossi D. J. Chem. Soc., Perkin Trans. 2 1981; 228.
21. Abraham RJ, Angiolini S, Edgar M, Sancassan F. J. Chem. Soc.,
Perkin Trans. 2 1995; 1973.
Calculations
The calculations of chemical shifts were carried out within
the framework of the DFT25 using the Gaussian 03 program.32
Geometries of all compounds were optimized at the
B3LYP/6–311CG(d,p) level, the absolute shielding constants
were calculated at the B3LYP/6–311CCG(2d,2p)//B3LYP/
6–311CG(d,p) level using the GIAO method. The shielding
constants of TMS were obtained in the same way.
The coupling constants were calculated according to
recent suggestions33 based on analytical implementation of
the NMR indirect nuclear spin–spin coupling constants at
the DFT level. This implementation involves all four contri-
butions of the non-relativistic Ramsey theory: diamagnetic
and paramagnetic spin–orbit contributions and paramag-
netic Fermi contact and spin–dipole contributions. With
respect to known RHF instability problems, we used the
B3LYP (hybrid BLYP) exchange-correlation functional with
the 6–311CCG(2d,2p) basis set.
22. (a) Hachiya I, Moriwaki M, Kobayashi S. Bull. Chem. Soc. Jpn.
1995; 68: 2053; (b) Brook MA, Henry C. Tetrahedron 1996; 52: 861.
23. Andreou AD, Bulbulian RV, Gore PH. Tetrahedron 1980; 36: 2101.
24. (a) Pytela O, Prusek O. Collect.Czech. Chem. Commun. 1999; 64:
1617; (b) Thompson HW, Steel G. Trans. Faraday Soc. 1956; 52:
1451; (c) Bo¨hm S, Fiedler P, Exner O. New J. Chem. 2004; 28: 67.
25. Becke AD. J. Chem. Phys. 1993; 98: 5648.
26. George P, Trachtman M, Bock CW, Brett AM. J. Chem. Soc., Perkin
Trans. 2 1976; 1222.
27. (a) Hansen PE. Org. Magn. Reson. 1978; 11: 215; (b) Marshall JL,
Faehl LG, Kattner R, Hansen PE. Org. Magn. Reson. 1979; 12: 169.
28. Marshall JL, Faehl LG, Kattner R. Org. Magn. Reson. 1979; 12:
163.
Acknowledgements
29. Fiedler P, Exner O. Collect. Czech. Chem. Commun. 2004; 69: 79.
30. (a) Haworth RD, Jones B, Way YM. J. Chem. Soc. 1943; 10;
(b) Elsner BB, Strauss HE, Forbes EJ. J. Chem. Soc. 1957; 578.
31. Bax A, Freeman R, Kemsell SP. J. Am. Chem. Soc. 1980; 102: 4849.
32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA,
Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN,
Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Men-
nucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakat-
suji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J,
Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M,
Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J,
Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R,
Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA,
Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S,
Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD,
Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clif-
ford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P,
Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA,
Peng CY, Nanayakkara A, Challacombe M, Gill PMW, John-
son B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 03,
Revision B.03. Gaussian: Pittsburgh, PA, 2003.
This work was carried within the framework of the research project
Z4055905 of the Academy of Sciences of the Czech Republic and
was supported by the Ministry of Education of the Czech Republic
(Project LN00A032, Center for Complex Molecular Systems and
Biomolecules).
REFERENCES
1. Birtles RH, Hampson GC. J. Chem. Soc. 1937; 10.
2. Braude EA, Sondheimer F, Forbes WF. Nature (London) 1954; 173:
117.
3. Ahlbrecht H, Du¨ber EO, Epsztajn J, Marcinkowski RMK.
Tetrahedron 1984; 40: 1157.
4 (a) Benassi R, Iarossi D, Folli U, Schenetti L, Taddei F. J. Chem.
Soc., Perkin Trans
2 1981; 228; (b) Grimaud M, Pfister-
Guillouzo G. Org. Magn. Reson. 1975; 7: 386.
5. Dhami KS, Stothers JB. Can. J. Chem. 1965; 43: 479.
6. (a) Goethals G, Uzan R, Nadjo L, Doucet JP. J. Chem. Soc., Perkin
Trans. 2 1982; 885; (b) Oakley MG, Boykin DW. J. Chem. Soc.,
Chem. Commun. 1986; 439; (c) Solladie´-Cavallo A, Solladie´ G.
Org. Magn. Reson. 1977; 10: 235; (d) Hansen PE, Poulsen OK,
Berg A. Org. Magn. Reson. 1977; 9: 649.
33. (a) Helgaker T, Watson M, Handy NC. J. Chem. Phys. 2000; 113:
9402; (b) Sychrovsky V, Grafenstein J, Cremer D. J. Chem. Phys.
2000; 113: 3530; (c) Barone V, Peralta J, Contreras RH, Snyder JP.
J. Chem. Phys., Sect. A 2002; 106: 5607.
7. (a) Leibfritz D. Chem. Ber. 1975; 108: 3014; (b) Guilleme J, Diez E,
Bermejo FJ. Magn. Reson. Chem. 1985; 23: 442.
8. Baumstark AL, Balakrishnan P, Dotrong M, McCloskey CJ,
Oakley MG, Boykin DW. J. Am. Chem. Soc. 1987; 109: 1059.
Copyright 2004 John Wiley & Sons, Ltd.
Magn. Reson. Chem. 2004; 42: 844–851