and the dummy atom. Typical structures corresponding to the
peak points in the profile are included. The calculated results
revealed that the potential energies of the inclusion models are
always higher than those of the exclusion models. The profile
also shows a minimum at dmin 8.0 A (Fig. 8, inset), and the
corresponding structure is consistent with the crystal structure
in the compound 2. Looking into the structure of the guest g2,
a bridged methylene orients the two neighboring phenyl rings
at 113.761 (see the CIF file of compound 2w), which causes a
more strained geometry when the guest moves into the cavity
of the host Q[6] and consequently leads to the higher potential
energy of the inclusion model.
S. Lorenzo, G. R. Lewis and I. Dance, Angew. Chem., Int. Ed.,
2002, 41, 275; (e) J. Z. Zhao, H. J. Kim, J. Oh, S. Y. Kim, J. Lee,
W. S. Sakamoto, K. Yamaguchi and K. Kim, Angew. Chem., Int.
Ed., 2001, 40, 4233; (f) H. Isobe, S. Sato and E. Nakamura, Org.
Lett., 2002, 4, 1287; (g) S. Y. Jon, N. Selvapalam, D. H. Oh,
J. K. Kang, S. Y. Kim, Y. J. Jeon, J. W. Lee and K. Kim, J. Am.
Chem. Soc., 2003, 125, 10186; (h) A. I. Day, A. P. Arnold and
R. J. Blanch, Molecules, 2003, 8, 74; (i) Y. J. Zhao, S. F. Xue,
Q. J. Zhu, Z. Tao, J. X. Zhang, Z. B. Wei, L. S. Long, M. L. Hu,
H. P. Xiao and A. I. Day, Chin. Sci. Bull., 2004, 49, 1111;
(j) J. Lagona, J. C. Fettinger and L. Issacs, J. Org. Chem., 2005,
70, 10381; (k) J. Lagona, B. D. Wagner and L. Isaacs, J. Org.
Chem., 2006, 71, 1181.
3 (a) W. L. Mock, Top. Curr. Chem., 1995, 175, 1; (b) J. W. Lee,
S. Samal, N. Selvapalam, H. J. Kim and K. Kim, Acc. Chem. Res.,
2003, 36, 621; (c) J. Lagona, P. Mukhopadhyay, S. Chakrabarti
and L. Isaacs, Angew. Chem., Int. Ed., 2005, 44, 4844;
(d) F. H. Huang and H. W. Gibson, Prog. Polym. Sci., 2005, 30,
982; (e) K. Kim, N. Selvapalam, Y. H. Ko, K. M. Park, D. Kim
and J. Kim, Chem. Soc. Rev., 2007, 36, 267; (f) M. D. Pluth and
K. N. Raymond, Chem. Soc. Rev., 2007, 36, 161; (g) V. Sindelar,
S. Silvi, S. E. Parker, D. Sobransingh and A. E. Kaifer, Adv. Funct.
Mater., 2007, 17, 694; (h) W. M. Nau, A. Hennig and A. L. Koner,
Springer Ser. Fluoresc., 2008, 4, 185.
4 (a) Y. H. Ko, K. Kim, J. K. Kang, H. Chun, J. W. Lee,
S. Sakamoto, K. Yamaguchi, J. C. Fettinger and K. Kim, J. Am.
Chem. Soc., 2004, 126, 1932; (b) K. M. Park, S. Y. Kim, J. Heo,
D. Whang, S. Sakamoto, K. Yamaguchi and K. Kim, J. Am.
Chem. Soc., 2002, 124, 2140; (c) E. Lee, J. Kim, J. Heo, D. Whang
and K. Kim, Angew. Chem., Int. Ed., 2001, 40, 399; (d) E. Lee,
J. Heo and K. Kim, Angew. Chem., Int. Ed., 2000, 39, 2699;
(e) D. Whang, K. M. Park, J. Heo, P. Ashton and K. Kim,
J. Am. Chem. Soc., 1998, 120, 4899; (f) D. Whang and K. Kim,
J. Am. Chem. Soc., 1997, 119, 451.
5 (a) Y. J. Zhao, D. P. Buck, D. L. Morris, M. H. Pourgholami,
A. I. Day and J. G. Collins, Org. Biomol. Chem., 2008, 6, 4509;
(b) N. Dong, S. F. Xue, Q. J. Zhu, Z. Tao, Y. Zhao and L. X. Yang,
Supramol. Chem., 2008, 20, 663; (c) N. Saleh, A. L. Koner and
W. M. Nau, Angew. Chem., Int. Ed., 2008, 47, 5398; (d) D. P. Buck,
P. M. Abeysinghe, C. Cullinane, A. I. Day, J. G. Collins and
M. M. Harding, Dalton Trans., 2008, 2328; (e) M. S. Bali,
D. P. Buck, A. J. Coe, A. I. Day and J. G. Collins, Dalton Trans.,
2006, 5337; (f) Y. J. Jeon, S. Y. Kim, Y. H. Ko, S. Sakamoto,
K. Yamaguchi and K. Kim, Org. Biomol. Chem., 2005, 3, 2122;
(g) N. J. Wheate, A. I. Day, R. J. Blanch, A. P. Arnold, C. Cullinane
and J. G. Collins, Chem. Commun., 2004, 1424; (h) M. Shaikh,
J. Mohanty, A. C. Bhasikuttan, V. D. Uzunova, W. M. Nau and
H. Pal, Chem. Commun., 2008, 3681.
Conclusion
The single crystal X-ray diffraction determination of the
interaction complexes obtained from methyl-substituted
cucurbiturils (TMeQ[6] and m-HMeQ[6]) and guests containing
protonated aniline groups (hydrochloride salts of benzidine
hydrochloride and bis(4-aminophenyl) methane) showed the
formation of two host–guest exclusion complexes in which the
guest molecules were excluded at the portals of the host
cucurbiturils. In the solid state, each guest or host was
sandwiched between neighboring hosts or guests leading to
the formation of 1D supramolecular chains. Analysis of the 1H
NMR spectra showed no obvious change in the proton
chemical shifts of either the host or guest molecules thereby
suggesting that an inclusion interaction was not present
between TMeQ[6] with g1ꢀHCl in the solution state, while a
downfield shift of the resonances of the aromatic protons of g2
clearly suggested the formation of the exclusion complex for
the m-HMeQ[6]–g2 system. Spectroscopic analysis not only
revealed unexpectedly high formation constants B105 L molꢁ1
for the TMeQ[6]–g1 system and B1010 L2 molꢁ2 for the
m-HMeQ[6]–g2 system in aqueous solution at pH 5.6, but
also revealed that the interaction ratio of the host : guest was
1 : 1 for the TMeQ[6]–g1 system and 2 : 1 for the TMeQ[6]–g1
system. For the systems studied here, the experiments are
in good agreement with HF and B3LYP computational
approaches using moderately-sized basis sets. Overall, guests
with neighboring aromatic rings favor formation of the
exclusion host–guest complexes due to the geometric strain
in the Q[6] cavity.
6 (a) W. L. Mock, T. A. Irra, J. P. Wepsiec and T. L. Manimaran,
J. Org. Chem., 1983, 48, 3619; (b) D. Tuncel and J. H. Steinke,
Chem. Commun., 1999, 1509.
7 (a) S. Y. Jon, Y. H. Ko, S. H. Park, H. J. Kim and K. Kim, Chem.
Commun., 2001, 1938; (b) T. C. Krasia and J. H. G. Steinke, Chem.
Commun., 2002, 22; (c) D. Tuncel and J. H. G. Steinke, Chem.
Commun., 2002, 496; (d) M. Pattabiraman, A. Natarajan,
R. Kaliappan, J. T. Mague and V. Ramamurthy, Chem. Commun.,
2005, 4542; (e) M. Pattabiraman, L. S. Kaanumalle and
A. Natarajan V. Ramamurthy, Langmuir, 2006, 22, 7605;
(f) N. Barooah, B. C. Pemberton and J. Sivaguru, Org. Lett.,
2008, 10, 3339; (g) C. Yang, T. Mori, Y. K. Origane, H. Young,
N. Selvapalam, K. Kim and Y. Inoue, J. Am. Chem. Soc., 2008,
130, 8574.
8 (a) J. Mohanty, A. C. Bhasikuttan, S. D. Choudhury and H. Pal,
J. Phys. Chem. B, 2008, 112, 10782; (b) R. L. Halterman,
J. L. Moore and L. M. Mannel, J. Org. Chem., 2008, 73, 3266;
(c) A. C. Bhasikuttan, J. Mohanty, W. M. Nau and H. Pal, Angew.
Chem., Int. Ed., 2007, 46, 4120; (d) T. A. Martyn, J. L. Moore,
R. L. Halterman and W. T. Yip, J. Am. Chem. Soc., 2007, 129,
10338; (e) R. B. Wang, L. N. Yuan and D. H. Macartney, Chem.
Commun., 2005, 5867; (f) V. Sindelar, M. A. Cejas, F. M. Raymo,
W. Z. Chen, S. E. Parker and A. E. Kaifer, Chem.–Eur. J., 2005,
11, 7054; (g) J. Mohanty and W. M. Nau, Angew. Chem., Int. Ed.,
2005, 44, 3750.
Acknowledgements
Support from the National Natural Science Foundation
of China (NSFC; No. 20662003 and 20767001) and the
‘‘Chun-Hui’’ Funds of Chinese Ministry of Education is
gratefully acknowledged.
References
1 W. A. Freeman and W. L. Mock, J. Am. Chem. Soc., 1981, 103,
7367.
2 (a) A. Flinn, G. C. Hough, J. F. Stoddart and D. J. Williams,
Angew. Chem., Int. Ed. Engl., 1992, 31, 1475; (b) A. I. Day,
A. P. Arnold, R. J. Blanch and B. Snushall, J. Org. Chem., 2001,
66, 8094; (c) J. Kim, I. S. Jung, S. Y. Kim, E. Lee, J. K. Kang,
S. Sakamoto, K. Yamaguchi and K. Kim, J. Am. Chem. Soc.,
2000, 122, 540; (d) A. I. Day, R. J. Blanch, A. P. Arnold,
9 (a) O. A. Gerasko, E. A. Mainicheva, M. I. Naumova,
M. Neumaier, M. M. Kappes, S. Lebedkin, D. Fenske and
ꢂc
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2009
2142 | New J. Chem., 2009, 33, 2136–2143