Communication
Organic & Biomolecular Chemistry
M. A. Corsello and N. K. Garg, J. Am. Chem. Soc., 2014, 136,
3036–3039.
3 (a) T. Takeuchi, S. Oishi, T. Watanabe, H. Ohno,
J.-I. Sawada, K. Matsuno, A. Asai, N. Asada, K. Kitaura and
N. Fujii, J. Med. Chem., 2011, 54, 4839–4846; (b) C. Ito,
M. Itoigawa, A. Sato, C. M. Hasan, M. A. Rashid,
H. Tokuda, T. Mukainaka, H. Nishino and H. Furukawa,
J. Nat. Prod., 2004, 67, 1488–1491; (c) A. A. Pieper,
S. L. McKnight and J. M. Ready, Chem. Soc. Rev., 2014, 43,
6716–6726.
4 (a) W. M. O’Brien and G. F. Bagby, Pharmacotherapy, 1987,
7, 16–24; (b) O. Thau-Zuchman, E. Shohami,
A. G. Alexandrovich, V. Trembovler and R. R. Leker,
J. Neurotrauma, 2012, 29, 375–384.
5 (a) M. M. Gallogly, H. M. Lazarus and B. W. Cooper, Ther.
Adv. Hematol., 2017, 8, 245–261; (b) R. M. Stone,
S. J. Mandrekar, B. L. Sanford, K. Laumann, S. Geyer,
C. D. Bloomfield, C. Thiede, T. W. Prior, K. Döhner,
G. Marcucci, F. Lo-Coco, R. B. Klisovic, A. Wei, J. Sierra,
M. A. Sanz, J. M. Brandwein, T. de Witte, D. Niederwieser,
F. R. Appelbaum, B. C. Medeiros, M. S. Tallman, J. Krauter,
R. F. Schlenk, A. Ganser, H. Serve, G. Ehninger, S. Amadori,
R. A. Larson and H. Döhner, N. Engl. J. Med., 2017, 377,
454–463.
Scheme 5 Synthesis of carbazoles by using Z-alkene 1a’.
bridged 3,3′-biscarbazole 7 was also achieved in 30% yield
using commercially available glutaraldehyde via a one-pot two-
fold sequential catalysis.
To our delight, the Z-isomer of 1a (1a′) did not affect the
outcome of the reaction and the corresponding carbazole 3h
was isolated in 64% yield (Scheme 5). This result certainly
eliminates the separation of the E and Z isomers of the corres-
ponding alkene precursors 1 which was formed during the
Wittig olefination method in almost 1 : 1 ratio.
In conclusion, carbazoles, specifically 3-alkyl-carbazoles
bearing several important commonly occurring functional
groups, are readily synthesized. Despite a sequence of four
reactions, the carbazoles are isolated in excellent yields by only
one purification. It is noteworthy that 3,9′-biscarbazoles and
methylene bridge 3,9′- and 3,3′-biscarbazoles are also efficien-
tly synthesized in good yields. The use of commonly available
cheap bottle reagents as catalysts and inexpensive molecular
oxygen as the sole oxidant renders this method economically
viable.
6 X. Wu, J. Kosaraju, W. Zhou and K. Y. Tam, ACS Chem.
Neurosci., 2017, 8, 676–685.
7 (a) N. Blouin and M. Leclerc, Acc. Chem. Res., 2008, 41,
1110–1119; (b) J. Li and A. C. Grimsdale, Chem. Soc. Rev.,
2010, 39, 2399–2410; (c) H. Huang, Q. Fu, B. Pan,
S. Zhuang, L. Wang, J. Chen, D. Ma and C. Yang, Org. Lett.,
2012, 14, 4786–4789; (d) B. Xu, E. Sheibani, P. Liu,
J. Zhang, H. Tian, N. Vlachopoulos, G. Boschloo, L. Kloo,
A. Hagfeldt and L. Sun, Adv. Mater., 2014, 26, 6629–6634;
(e) K. Brunner, A. van Dijken, H. Börner, J. J. A.
M. Bastiaansen, N. M. M. Kiggen and B. M. W. Langeveld,
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
J.
Am.
Chem.
Soc.,
2004,
126,
6035–6042;
M. S. M. gratefully acknowledges DST/INSPIRE Faculty Award/
2013/DST/INSPIRE/04/2013/000681. We thank the DST
(Sanction No. SR/FST/CSII-026/2013) for 500 MHz NMR facility
at IIT Kharagpur. AB and SS thank UGC, India for fellowship.
(f) K. R. J. Thomas, J. T. Lin, Y.-T. Tao and C.-W. Ko, J. Am.
Chem. Soc., 2001, 123, 9404–9411; (g) S. Kumar and
Y.-T. Tao, J. Org. Chem., 2015, 80, 5066–5076.
8 (a) W. C. P. Tsang, N. Zheng and S. L. Buchwald, J. Am.
Chem. Soc., 2005, 127, 14560–14561; (b) J. A. Jordan-Hore,
C. C. C. Johansson, M. Gulias, E. M. Beck and M. J. Gaunt,
Notes and references
J.
Am.
Chem.
Soc.,
2008,
130,
16184–16186;
1 (a) A. W. Schmidt, K. R. Reddy and H.-J. Knölker, Chem.
Rev., 2012, 112, 3193–3328; (b) J. Roy, A. K. Jana and
D. Mal, Tetrahedron, 2012, 68, 6099–6121.
2 (a) M. Rawat and W. D. Wulff, Org. Lett., 2004, 6, 329–332;
(b) C. Alayrac, D. Schollmeyer and B. Witulski, Chem.
Commun., 2009, 1464–1466; (c) K. E. Knott, S. Auschill,
A. Jäger and H.-J. Knölker, Chem. Commun., 2009, 1467–
1469; (d) Z. Meng, H. Yu, L. Li, W. Tao, H. Chen, M. Wan,
P. Yang, D. J. Edmonds, J. Zhong and A. Li, Nat. Commun.,
2015, 6, 6096–7003; (e) E. J. Gilbert and D. L. V. Vranken,
(c) K. Takamatsu, K. Hirano, T. Satoh and M. Miura, Org.
Lett., 2014, 16, 2892–2895; (d) B. J. Stokes, B. Jovanović,
H. Dong, K. J. Richert, R. D. Riell and T. G. Driver, J. Org.
Chem., 2009, 74, 3225–3228; (e) B. Liégault, D. Lee,
M. P. Huestis, D. R. Stuart and K. Fagnou, J. Org. Chem.,
2008, 73, 5022–5028; (f) T. Gensch, M. Rönnefahrt,
R. Czerwonka, A. Jäger, O. Kataeva, I. Bauer and
H.-J. Knölker, Chem.
– Eur. J., 2012, 18, 770–776;
(g) S. Maiti, T. K. Achar and P. Mal, Org. Lett., 2017, 19,
2006–2009.
J.
Am.
Chem.
Soc.,
1996,
118,
5500–5501;
9 (a) K. Ozaki, H. Zhang, H. Ito, A. Lei and K. Itami, Chem.
Sci., 2013, 4, 3416–3420; (b) J.-Q. Wu, Z. Yang, S.-S. Zhang,
C.-Y. Jiang, Q. Li, Z.-S. Huang and H. Wang, ACS Catal.,
(f) G. G. Rajeshwaran and A. K. Mohanakrishnan, Org.
Lett., 2011, 13, 1418–1421; (g) A. E. Goetz, A. L. Silberstein,
Org. Biomol. Chem.
This journal is © The Royal Society of Chemistry 2018