Organic Process Research & Development 2007, 11, 598−604
Enantioselective Synthesis of Hydrobenzofuranones Using an Asymmetric
Desymmetrizing Intramolecular Stetter Reaction of Cyclohexadienones
Qin Liu and Tomislav Rovis*
Department of Chemistry, Colorado State UniVersity, Fort Collins, Colorado 80523, U.S.A.
Abstract:
economy and simplicity.5 When this reaction is coupled with
a stereoselective process, it has the potential to afford
enantioenriched material from commonly available precur-
sors.6 To contribute to efforts to extend this powerful
transformation, we investigated cyclohexadienones, readily
available from dearomatization of phenols,7 as substrates for
an asymmetric desymmetrizing Stetter reaction (Scheme 1).
In a preliminary communication, we reported the asymmetric
intramolecular Stetter reaction of phenol-derived cyclohexa-
dienones with chiral triazolium salt-based catalysts.8 This
reaction allows for a rapid entry to hydrobenzofurans, which
are core skeletons found in several natural products.9 Herein,
we report our full investigation of this transformation,
including the optimization of reaction conditions, expansion
of the substrate scope, and scale-up of the reaction.
A series of cyclohexadienones were synthesized by dearomati-
zation of phenols followed by Dess-Martin oxidation. Asym-
metric intramolecular Stetter reactions of these substrates
provide hydrobenzofuranones in good to excellent yields and
excellent stereoselectivities. Up to three stereocenters as well
as a quaternary stereocenter are formed from polysubstituted
substrates. A scale-up experiment demonstrates the utility of
this transformation.
Introduction
Introduced by D. Seebach and E. J. Corey, reactivity
umpolung1 is a process in which the normal donor and
acceptor reactivity of a functional group is inverted to provide
non-obvious, complementary reactivity in organic synthesis.
The Stetter reaction2 is an umpolung process in which an
acylanion equivalent, generated from an aldehyde in the
presence of a nucleophilic catalyst, is added to a Michael
acceptor to form a C-C bond. If the Michael acceptor
involves a prochiral alkene, this reaction generates new
stereocenters.3 Recently, our group developed a family of
triazolium catalysts that promotes intramolecular Stetter
reactions in excellent enantioselectivities and diastereose-
lectivities.4
As powerful as it may be, any strategy is inherently
limited if the requisite substrates are esoteric or difficult to
access. In an effort to expand the scope of the asymmetric
intramolecular Stetter reaction in order to access more diverse
product scaffolds amenable to complex molecule total
synthesis, we initiated an effort at using aromatic feedstock
starting materials to provide Stetter substrates. Dearomati-
zation of aromatic compounds is a very useful strategy to
synthesize alicyclic compounds due to the reaction’s high
(5) (a) Woodward, R. B. J. Am. Chem. Soc. 1940, 62, 1208. (b) Waring, A. J.
AdVances in Alicyclic Chemistry; Academic Press: New York, 1966; p 129.
(c) Corey, E. J.; Girotra, N. N.; Mathew, C. T. J. Am. Chem. Soc. 1969, 91,
1557. (d) Wiesner, K.; Tsai, T. Y. R.; Nambiar, K. P. Can. J. Chem. 1978,
56, 1451. (e) Semmelhack, M. F.; Harrison, J. J.; Thebtaranonth, Y. J. Org.
Chem. 1979, 44, 3275. (f) Corey, E. J.; Dittami, J. P. J. Am. Chem. Soc.
1985, 107, 256. (g) Mander, L. N. Synlett 1991, 134. (h) Kopach, M. E.;
Harman, W. D. J. Am. Chem. Soc. 1994, 116, 6581. (i) Maruoka, K.; Ito,
M.; Yamamoto, H. J. Am. Chem. Soc. 1995, 117, 9091. (j) Villar, M.; Kolly-
Kovac, T.; Equey, O.; Renaud, P. Chem.-Eur. J. 2003, 9, 1566. (k) Clive,
D. L. J.; Fletcher, S. P.; Liu, D. Z. J. Org. Chem. 2004, 69, 3282. (l) Canesi,
S.; Bouchu, D.; Ciufolini, M. A. Org. Lett. 2005, 7, 175. (m) Jones, S. B.;
He, L. W.; Castle, S. L. Org. Lett. 2006, 8, 3757. (n) Marsini, M. A.; Gowin,
K. M.; Pettus, T. R. R. Org. Lett. 2006, 8, 3481. (o) Monje, P.; Grana, P.;
Paleo, M. R.; Sardina, F. J. Org. Lett. 2006, 8, 951.
(6) (a) Pearson, A. J.; Zhu, P. Y.; Youngs, W. J.; Bradshaw, J. D.; McConville,
D. B. J. Am. Chem. Soc. 1993, 115, 10376. (b) Pearson, A. J.; Milletti, M.
C.; Zhu, P. Y. Chem. Commun. 1995, 853. (c) Schultz, A. G. Chem.
Commun. 1999, 1263. (d) Imbos, R.; Minnaard, A. J.; Feringa, B. L. J.
Am. Chem. Soc. 2002, 124, 184. (e) Hayashi, Y.; Gotoh, H.; Tamura, T.;
Yamaguchi, H.; Masui, R.; Shoji, M. J. Am. Chem. Soc. 2005, 127, 16028.
(f) Studer, A.; Schleth, F. Synlett 2005, 3033. (g) Hoarau, C.; Pettus, T. R.
R. Org. Lett. 2006, 8, 2843. (h) Zhu, J. L.; Porco, J. A. Org. Lett. 2006, 8,
5169.
(7) (a) Pelter, A.; Elgendy, S. M. A. J. Chem. Soc. Perkin Trans. 1 1993, 1891.
(b) Moriarty, R. M.; Prakash, O. Org. React. 2001, 57, 327. (c) Tran-Huu-
Dau, M. E.; Wartchow, R.; Winterfeldt, E.; Wong, Y. S. Chem.-Eur. J.
2001, 7, 2349. (d) Canesi, S.; Bouchu, D.; Ciufolini, M. A. Org. Lett. 2005,
7, 175.
* Author to whom correspondence may be sent. Fax: (+1)-970-491-1801.
E-mail: rovis@lamar.colostate.edu.
(1) (a) Seebach, D.; Corey, E. J. J. Org. Chem. 1975, 40, 231. (b) Seebach, D.
Angew. Chem., Int. Ed. Engl. 1979, 18, 239.
(2) (a) Stetter, H. Angew. Chem., Int. Ed. Engl. 1976, 15, 639. (b) Stetter, H.;
Kuhlmann, H. Org. React. 1991, 40, 407.
(8) Liu, Q.; Rovis, T. J. Am. Chem. Soc. 2006, 128, 2552.
(9) (a) Burke, S. D.; Cobb, J. E.; Takeuchi, K. J. Org. Chem. 1985, 50, 3420.
(b) Chumoyer, M. Y.; Danishefsky, S. J.; Schulte, G. K. J. Am. Chem. Soc.
1994, 116, 11213. (c) Guth, H. HelV. Chim. Acta 1996, 79, 1559. (d) Yao,
S. L.; Johannsen, M.; Hazell, R. G.; Jorgensen, K. A. J. Org. Chem. 1998,
63, 118. (e) Jonasson, C.; Ronn, M.; Backvall, J. E. J. Org. Chem. 2000,
65, 2122. (f) Germain, J.; Deslongchamps, P. J. Org. Chem. 2002, 67, 5269.
(g) Takao, K.; Tsujita, T.; Hara, M.; Tadano, K. J. Org. Chem. 2002, 67,
6690. (h) Taber, D. F.; Neubert, T. D.; Rheingold, A. L. J. Am. Chem. Soc.
2002, 124, 12416. (i) Booker-Milburn, K. I.; Hirst, P.; Charmant, J. P. H.;
Taylor, L. H. J. Angew. Chem., Int. Ed. 2003, 42, 1642. (j) Clive, D. L. K.;
Fletcher, S. P. Chem. Commun. 2003, 2464. (k) Yamashita, M.; Ohta, N.;
Shimizu, T.; Matsumoto, K.; Matsuura, Y.; Kawasaki, I.; Tanaka, T.;
Maezaki, N.; Ohta, S. J. Am. Chem. Soc. 2003, 68, 1216.
(3) (a) Enders, D.; Breuer, K.; Runsink, J.; Teles, J. H. HelV. Chim. Acta 1996,
79, 1899. (b) Enders, D.; Balensiefer, T. Acc. Chem. Res. 2004, 37, 534.
(c) Christmann, M. Angew. Chem., Int. Ed. 2005, 44, 2632. (d) Matsumoto,
Y.; Tomioka, K. Tetrahedron Lett. 2006, 47, 5843.
(4) (a) Kerr, M. S.; Read de Alaniz, J.; Rovis, T. J. Am. Chem. Soc. 2002, 124,
10298. (b) Kerr, M. S.; Rovis, T. Synlett 2003, 1934. (c) Kerr, M. S.; Rovis,
T. J. Am. Chem. Soc. 2004, 126, 8876. (d) Read de Alaniz, J.; Rovis, T. J.
Am. Chem. Soc. 2005, 127, 6284. (e) Reynolds, N. T.; Rovis, T. Tetrahedron
2005, 61, 6368. (f) Moore, J. L.; Kerr, M. S.; Rovis, T. Tetrahedron 2006,
62, 11477.
598
•
Vol. 11, No. 3, 2007 / Organic Process Research & Development
10.1021/op600278f CCC: $37.00 © 2007 American Chemical Society
Published on Web 03/22/2007