933
W. H. Miles et al.
Paper
Synthesis
1H NMR (400 MHz, CDCl3): δ = 5.40 (br s, 1 H), 3.80 (br s, 1 H), 3.11
(m, 1 H), 2.66 (m, 1 H), 2.34–2.13 (m, 3 H), 1.97 (br s, 4 H), 1.70 (m, 1
H), 1.61–1.50 (m, 4 H), 1.42–1.23 (m, 2 H), 0.93 (d, J = 6.6 Hz, 3 H),
0.89 (d, J = 6.6 Hz, 3 H).
thank Lafayette College’s Academic Research Committee for financial
support. We gratefully acknowledge a grant from the Kresge Founda-
tion for the purchase of a 400 MHz NMR spectrometer.
13C NMR (100 MHz, CDCl3): δ = 180.8, 133.0, 130.8, 100.9, 46.3, 39.4,
37.0, 36.0, 30.7, 29.3, 27.7, 25.5, 23.4 (2C), 22.8, 22.5.
Supporting Information
HRMS (DART-TOF): m/z [M + 1]+ calcd for C16H25O3: 265.1804; found:
265.1807.
Supporting information for this article is available online at
S
u
p
p
ortiInfogrmoaitn
S
u
p
p
o
nrtogI
f
rmoaitn
(3S*,3aR*,4S*,9aS*)-4-Isobutyl-3-methyl-3a,4,5,6,7,8,9,9a-octahy-
dronaphtho[2,3-c]furan-1(3H)-one (16a)
References
To a solution of ClTi(O-iPr)3 (0.81 mL 3.50 mmol) in anhyd THF (6 mL)
at 0 °C was added MeLi (2.0 mL, 1.6 M in hexanes, 3.2 mmol) and the
reaction mixture was stirred for 1 h. After the mixture was warmed
to 22 °C, 15b (0.260 g, 0.985 mmol) was added and the mixture was
stirred at 22 °C for 19 h. The mixture was quenched with aq 1 M HCl
(40 mL), stirred vigorously for 15 min, and extracted with EtOAc (3 ×
50 mL). The combined organic extracts were washed with brine (50
mL) and dried over Na2SO4. The volatiles were removed on the rotary
evaporator and the crude product was purified by flash chromatogra-
phy (5% EtOAc in hexanes → 50% EtOAc in hexanes) to give 16a; white
solid; yield: 0.241 g (93%); mp 81–84 °C.
(1) Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis,
G. Angew. Chem. Int. Ed. 2002, 41, 1668.
(2) (a) Miles, W. H.; Cohen, E. M.; Naimoli, B. J. Synth. Commun.
2013, 43, 1980; and references cited therein. (b) Mukherjee, S.;
Corey, E. J. Org. Lett. 2010, 12, 1024. (c) Kakushima, M.; Scott, D.
G. Can. J. Chem. 1979, 57, 1399. (d) Danishefsky, S.; Prisbylla, M.
P.; Hiner, S. J. Am. Chem. Soc. 1978, 100, 2918.
(3) (a) Kowalski, C. J.; Lal, G. S. J. Am. Chem. Soc. 1988, 110, 3693.
(b) Zhang, Y. D.; Tang, Y. F.; Luo, T. P.; Shen, J.; Chen, J. H.; Yang,
Z. Org. Lett. 2006, 8, 107. (c) Hu, Q. Y.; Zhou, G.; Corey, E. J. J. Am.
Chem. Soc. 2004, 126, 13708.
(4) Feringa, B. L.; De Lange, B.; Jansen, J. F. G. A.; De Jong, J. C.;
Lubben, M.; Faber, W.; Schudde, E. P. Pure Appl. Chem. 1992, 64,
1865.
(5) Simple γ-alkyl-γ-hydroxybutenolides are at slow exchange in
the 1H NMR at ambient temperature, with the presence of the
chain tautomer as high as 5%.
IR (CH2Cl2): 1763 cm–1
.
1H NMR (400 MHz, CDCl3): δ = 4.18 (dq, J = 4.2, 6.4 Hz, 1 H) 3.00 (qd,
J = 2.9, 8.2, 10.5 Hz, 1 H), 2.44 (dt, J = 4.5, 10.5 Hz, 1 H), 2.33 (dd, J =
2.8, 15.6 Hz, 1 H), 2.24–2.13 (m, 2 H), 1.99 (br s, 3 H) 1.67–1.49 (m, 6
H), 1.36 (m, 1 H), 1.35 (d, J = 6.2 Hz, 3 H), 1.19 (m, 1 H), 0.93 (d, J = 6.6
Hz, 3 H), 0.89 (d, J = 6.6 Hz, 3 H).
(6) For a review of the synthetic applications of γ-hydroxybuteno-
lides, see: Miles, W. H. Curr. Org. Synth. 2014, 11, 244.
(7) (a) Miller, K. K.; Zhang, P.; Nishizawa-Brennen, Y.; Frost, J. W.
ACS Sustain. Chem. Eng. 2014, 2, 2053. (b) Furuta, K.; Miwa, Y.;
Iwanaga, K.; Yamamoto, H. J. Am. Chem. Soc. 1988, 110, 6254.
(c) Al-Zoubi, R. M.; Marion, O.; Hall, D. G. Angew. Chem. Int. Ed.
2008, 47, 2876. (d) Zheng, H. C.; Hall, D. G. Tetrahedron Lett.
2010, 51, 3561. (e) Ryu, D. H.; Corey, E. J. J. Am. Chem. Soc. 2003,
125, 6388.
(8) (a) Magnus, P.; Cairns, P. M. J. Am. Chem. Soc. 1986, 108, 217.
(b) Magnus, P.; Cairns, P. M.; Moursounidis, J. J. Am. Chem. Soc.
1987, 109, 2469.
(9) (a) Noutsias, D.; Vassilikogiannakis, G. Org. Lett. 2012, 14, 3565.
(b) Tu, N. P. W.; Yip, J. C.; Dibble, P. W. Synthesis 1996, 77.
(c) Sánchez-Obregón, R.; Salmón, M.; Walls, F. Bol. Inst. Quim.
Univ. Nacl. Autón. Méx. 1970, 22, 16; Chem. Abstr. 1971, 74,
140602.
13C NMR (100 MHz, CDCl3): δ = 180.6, 133.0, 130.7, 77.3, 45.3, 39.4,
37.3, 37.0, 30.6, 29.3, 28.3, 25.6, 23.4, 23.2, 22.9, 22.7.
HRMS (DART-TOF): m/z [M + 1]+ calcd for C17H27O2: 263.2011; found:
263.2017.
(3R*,3aR*,4S*,9aS*)-4-Isobutyl-3-methyl-3a,4,5,6,7,8,9,9a-octahy-
dronaphtho[2,3-c]furan-1(3H)-one (16b)
To a solution 15a (0.094 g, 0.38 mmol) in EtOH (2 mL) was added
NaBH4 (0.075 g, 0.19 mmol) and the reaction mixture was stirred for
1 h at 22 °C. H2O (10 mL) and aq 1 M HCl (10 mL) were added and the
mixture was stirred vigorously for 1 h. The mixture was extracted
with Et2O (3 × 30 mL), the combined organic extracts were washed
with brine (30 mL), dried over NaSO4, and concentrated on the rotary
evaporator. The crude product (16a:16b = 6:94) was purified by flash
chromatography (silica gel; 10 → 25% EtOAc in hexanes) to give 16b;
white solid; yield: 0.061 g (69%); mp 125–127 °C.
(10) (a) Lee, G. C. M.; Syage, E. T.; Harcourt, D. A.; Holmes, J. M.;
Garst, M. E. J. Org. Chem. 1991, 56, 7007. (b) Adam, W.;
Rodriguez, A. Tetrahedron Lett. 1981, 22, 3505. (c) Feringa, B. L.
Recl. Trav. Chim. Pays-Bas 1987, 106, 469. (d) Cottier, L.;
Descotes, G.; Eymard, L.; Rapp, K. Synthesis 1995, 303.
(e) Annangudi, S. P.; Sun, M. J.; Salomon, R. G. Synlett 2005,
1468.
IR (CH2Cl2): 1765 cm–1
.
1H NMR (400 MHz, CDCl3): δ = 4.67 (dq J = 5.0, 6.8 Hz, 1 H) 2.88 (ddd,
J = 5.0, 8.4, 11.2 Hz, 1 H), 2.48 (m, 1 H), 2.38 (m, 1 H), 2.25–1.88 (m, 6
H) 1.70–1.40 (m, 5 H), 1.50 (d, J = 6.6 Hz, 3 H), 1.25–1.12 (m, 2 H), 0.91
(d, J = 6.6 Hz, 3 H), 0.77 (d, J = 6.6 Hz, 3 H).
13C NMR (100 MHz, CDCl3): δ = 181.2, 134.6, 127.7, 79.0, 44.0, 39.6,
38.7, 37.0, 32,1, 30.6, 27.3, 26.3, 24.8, 23.4, 23.2, 21.3, 14.9.
HRMS (DART-TOF): m/z [M + 1]+ calcd for C17H27O2: 263.2011; found:
263.2019.
(11) (a) Larson, R. T.; Pemberton, R. P.; Franke, J. M.; Tantillo, D. J.;
Thomson, R. J. J. Am. Chem. Soc. 2015, 137, 11197.
(b) Chackalamannil, S.; Wang, Y. G.; Greenlee, W. J.; Hu, Z. Y.;
Xia, Y.; Ahn, H. S.; Boykow, G.; Hsieh, Y. S.; Palamanda, J.; Agans-
Fantuzzi, J.; Kurowski, S.; Graziano, M.; Chintala, M. J. Med.
Chem. 2008, 51, 3061.
Acknowledgment
(12) Liu, P.; Pan, Y. M.; Hu, K.; Huang, X. C.; Liang, Y.; Wang, H. S. Tet-
rahedron 2013, 69, 7925.
Acknowledgment is made to the Donors of the American Chemical
Society Petroleum Research Fund for support of this research. We also
© Georg Thieme Verlag Stuttgart · New York — Synthesis 2016, 48, 924–934