I. Shibata et al. / Tetrahedron Letters 52 (2011) 721–723
723
4. Lagowski, J. J. The Chemistry of Nonaqueous Solvents; Academic Press: New York,
1976; (b) Inaba, M.; Siroma, Z.; Funabiki, A.; Asano, M. Langmuir 1996, 12,
1535–1540.
and 11.2 Hz, one of MeOCH2), 4.37 (dd, 1H, J = 6.3 and 8.3 Hz, one of OCH2),
4.51 (t, J= 8.3 Hz, 1H, one of OCH2), 4.80–4.88 (m, 1H, OCH); 13C NMR (CDCl3) d
59.3, 66.0, 71.3, 75.0, 154.9; EIHRMS calcd for C5H8O4 132.0423, found
132.0420.
5. Fukuoka, S.; Kawamura, M.; Komiya, K.; Tojo, M.; Hachiya, H.; Hasegawa, K.;
Aminaka, M.; Okamoto, H.; Fukawa, I.; Konno, S. Green Chem. 2003, 5, 497–507.
6. (a) Darensbourg, D. J.; Holtcamp, M. W. Coord. Chem. Rev. 1996, 153, 155–174;
(b) Sun, J.; Fujita, S.; Arai, M. J. Organomet. Chem. 2005, 690, 3490–3497.
7. (a) Meléndez, J.; North, M.; Pasquale, R. Eur. J. Inorg. Chem. 2007, 3323–3326;
(b) Meléndez, J.; North, M.; Villuendas, P. Chem. Commun. 2009, 2577–2579; (c)
North, M.; Pasquale, R. Angew. Chem., Int. Ed. 2009, 48, 2946–2948; (d) Yinz, S.-
F.; Shimada, S. Chem. Commun. 2009, 1136–1138; (e) Barkakaty, B.; Morino, K.;
Sudo, A.; Endo, T. Green Chem. 2010, 12, 42–44.
10. Isolation of ring-opened product 3: To a mixture of InBr3 (1.78 g, 5 mmol), Ph3P
(1.32 g. 5 mmol), and THF was added propylene oxide (1b) (5.0 mmol) under
nitrogen. The reaction mixture was stirred at room temperature for 1 h. The
resulting mixture was poured into aqueous NaHCO3 (50 mL) and extracted
with Et2O (50 mL). The organic layer was dried over MgSO4 and concentrated
in vacuo. Phosphonium salt 3 was obtained as a wax (1.60 g, 80%). 1H NMR
(CDCl3) d 1.51 (dd, J = 2.67, 5.84 Hz, 3H), 2.23 (m, 1H), 3.24 (ddd, J = 2.93, 12.70,
15.63 Hz, 1H), 3.45 (ddd, J = 10.74, 10.74, 15.63 Hz, 1H), 4.22 (m, 1H), 7.60–
8. Cintas, P. Synlett 1995, 1087–1096.
7.90 (m, 15H). 13C NMR (CDCl3)
d 25.8 (d, JC–P = 14.53 Hz), 33.1 (d, JC–
9. Representative method: To a CO2 balloon equipped 10 mL round-bottomed flask
containing indium bromide (0.178 g, 0.5 mmol) was added triphenylphosphine
(0.262 g, 1 mmol) at rt. Epoxide 1 (10 mmol) was added, and stirred at rt for
5 h. The reaction system is gas (CO2)–liquid (substrate) biphasic system. To the
reaction mixture was added 10 mL of H2O. The mixture was extracted with
Et2O (10 mL) for three times. The organic layer was dried over MgSO4. After
filtration and evaporation, the corresponding carbonate 2 was obtained in
almost pure form. Yield was determined by comparing the ratio of product to
substrate in the 1H NMR spectrum of the crude mixture. CAS Nos. 2a: 40492-
31-7, 2b: 108-32-7, 2c: 66675-43-2, 2d: 4427-92-3, 2e: 4427-96-7, 2f: 2463-
45-8, 2g: 949-97-3, 2h: 13818-44-5. For example, spectral data for 2a:
Purification was done by distillation under reduced pressure. bp 85 °C/
P = 53.46 Hz), 63.2 (d, JC–P = 6.23 Hz), 118.2 (d, JC–P = 87.19 Hz), 130.4 (d, JC–
P = 12.98 Hz), 133.6 (d, JC–P = 10.38 Hz), 135.0 (d, JC–P = 3.11 Hz); EIMS 321.1
(M+ꢀBr calcd for C21H22BrOP 400.0592). The corresponding iodide salt. Huang,
J.-W.; Shi, M. J. Org. Chem. 2003, 68, 6705–6709. Isolation of A or A0 was
unsuccessful even in the treatment in inert glove box.
11. Coordination of Ph3P to indium nucleophiles: (a) Inoue, K.; Yasuda, M.; Shibata,
I.; Baba, A. Tetrahedron Lett. 2000, 41, 113–116; (b) Inoue, K.; Shimizu, Y.;
Shibata, I.; Baba, A. Synlett 2001, 1659–1661.
12. Optimized 1:2 ratio of InBr3/Ph3P would be according to the formation of stable
1:2 complex of InBr3/Ph3P which has been already reported: (a) Carty, A. J.;
Tuck, D. G. J. Chem. Soc. 1966, 1081–1087; (b) Chen, F.; Ma, G.; Bernard, G. M.;
Cavell, R. G.; McDonald, R.; Ferguson, M. J.; Wasylishen, R. E. J. Am. Chem. Soc.
2010, 132, 5479–5493.
;
0.07 mm Hg; IR (neat) 2900, 1789, 1172 cmꢀ1 1H NMR (CDCl3) d 3.43 (s, 3H,
OCH3), 3.54 (dd, 1H, J = 3.9 and 11.2 Hz, one of MeOCH2), 3.67 (dd, 1H, J = 3.4