Please do not adjust margins
ChemComm
Page 4 of 5
DOI: 10.1039/C6CC09296A
ARTICLE
Journal Name
formed by different bacterial cells were then treated with
molecules, ERM-1 and 2, (20 μM) respectively for 1 hr and
subsequent biofilm imaging was carried out under microscopy with
the excitation at 350 nm. As shown In Fig. 3, the biofilm treated
with ERM-1 showed the different imaging staining. There was
significant fluorescence readout observed in the biofilm consisting
of AmpC expressed E. cloacae strains, whereas, only the weak signal
was found in the biofilms formed by E. coli BL-21, which expressed
TEM-1 Bla. There was no fluorescence in E. cloacae biofilm in the
presence of AZT inhibitor and in the controlled biofilm with E. coli
DH5α (Fig. 3 and Fig. S7, ESI†). Although the similar biofilm imaging
analysis was also conducted by using ERM-2, there was no
difference observed in the imaging results between two biofilm
structures with E. cloacae and E. coli, which expressed different
types of bacterial antibiotic degrading enzymes (Fig. S8, ESI†). All
these results clearly suggested that rational design of enzyme-
responsive reporter molecule structures can facilitate specific
targeting of biofilm components, which may thus greatly benefit
the biofilm formation and controlled bacterial resistant inactivation
studies.
6
7
(a) R. Frei., A. S. Breitbach., H. E. Blackwell. Angew. Chem.
Int. Ed. 2012, 51, 5226.; (b) S. Neupane., N. D. Pant., S.
Khatiwada.,
R. Chaudhary., M.R. Banjara. Antimicrob. Resist. Infect
Control. 2016,
Sustainable Chem. Eng. 2014,
5
, 1; (c) L. Mi., G. A. Licina, S. Jiang. ACS
2, 2448.
(a) Høiby, N., Bjarnsholt, T., Givskov, M., Molin, S., & Ciofu,
O. Int. J. Antimicrob. Agents. 2010, 35, 322; (b) K.J. Teschler.,
D. Zamorano-Sanchez., A.S. Utama., J.A. Warner., G.C.L.
Wong., R.G. Linington. R.G., H.Y. Yildiz., Nat. Rev. Micro.
2015, 13, 255; (c) L. Hall-stoodley., J.W. Costerton., P.
Stoodley. Nat. Rev. Micro. 2004, 2, 95., (d) Chua, S.L., Yam,
J.K.H., Hao, P., Adav, S. S., Salido, M.M., Liu, Y., Givskov, M.,
Sze, S.K., Tolker-Nielsen, T. and Yang, L. Nat. Comm. 2016, 7,
1-6; (e) Kim J., Sahu S., Yau Y., Wang X., Shochat S. G.,
Nielsen P. H., Dueholm M. S., Otzen D. E., Lee J., Santos M.
M., Yam J. K. H., Kang N., Park S., Kwon H., Seviour T., Yang
L., Givskov M., Chang Y-T. J. Am. Chem. Soc. 2016, 138, 402.;
(f) Li, X., Yeh, Y. C., Giri, K., Mout, R., Landis, R. F., Prakash, Y.
S. and Rotello, V. M. Chem. Comm. 2015, 51, 282; (g) Chua,
S.L., Hultqvist, L.D., Yuan, M., Rybtke, M., Nielsen, T.E.,
Givskov, M., Tolker-Nielsen, T. and Yang, L. Nat. Protoc.
In summary, this work presents a simple and specific
approach towards the effective fluorescent imaging and
localization of drug resistant AmpC β-lactamase producing
bacterial strains in biofilms. By taking advantage of the bulky
methoxyimino group on the 7’-position of cephalosporin ring,
selectivity recognition towards Class C Bla can be easily
achieved. Such enzyme responsive reporter molecules could
serve as promising fluorescent probes to effectively image
AmpC producing bacteria in biofilms. Importantly, this
selective localization of fluorescent labelling could provide
great potential for direct observation of biofilm formation
from drug resistance pathogens, it may also supply the
valuable insights to benefit the effective treatment against
biofilm related bacterial infections in vitro and in vivo.
2015, 10, 1165; (h) K. Lewis. Nat. Rev. Microbiol, 2007, 5, 48.
(a) Y. Takaoka., A. Ojida., I. Hamachi. Angew. Chem. Int. Ed.
2013, 52, 4088; (b) S. J. Sorensen., M. Balley., L.H. Hansen.,
N. Kroer., S. Wuertz. Nat Rev. Microbiol. 2005, 3, 700; (c) S.
Mizukami, Y. Hori, and K. Kikuchi. Acc. Chem. Res. 2014, 47
247.
,
8
9
(a) S. Sugimoto., K. Okuda., R. Miyakawa., M. Sato., K. Arita-
Morioka., A. Chiba., K. Yamanaka., T. Ogura., Y. Mizunoe., C.
Sato. Sci. Rep. 2016,
Trends in Micro. 2015,
6
, 25889; (b) N. R. Thomas., L. R. John.
, 233; (c) T. R. Neu., J. R. Lawrence.,
4
Adv. Biochem. Eng. Biotechnol. 2014, 146, 1.
(a) D. Ding., K. Li., B. Liu., B. Z. Tang. Acc. Chem. Res., 2013,
46, 11, 2441; (b) J. Mei., N. L. C. Leung, R. T. K.Kwok, J. W. Y.
Lam., B. Z. Tang. Chem. Rev. 2015, 115, 11718; (c) J. Liang., B.
Z. Tang., B. Liu. Chem. Soc. Rev. 2015, 44, 2798; (d) H. Tong.,
Y. Hong., Y. Dong., M. Haubler., J. W. Y. Lam., Z. Li., Z. Guo.,
Z. Guo., B. Z. Tang. Chem. Comm. 2006, 35, 3705; (e) H. Li., J.
Chang., T. Hou., F. Li. J. Mater. Chem. B. 2016, 4, 198.
The authors acknowledge the Start-Up Grant (SUG), Tier 1
RG11/13 and RG35/15 awarded by Nanyang Technological
University, Singapore.
10 (a) G. A. Jacoby. Clin. Microbiol. Rev. 2009, 22, 161; (b) J.
Chen., X. Shang., F. Hu., X. Lao., X. Gao., H. Zheng., W. Yao.
Mini. Rev. Med. Chem. 2013, 13, 1846. (c) T. T. Jiang, R. R.
Liu, X. F. Huang, H. J. Feng, W. L. Teo and B. G. Xing, Chem.
Comm. 2009, 15, 1972.
11 (a) J. Zhang, Y. Sheng, S. L. May, D. C. Nelson, S. Li, Angew.
Chem. Int. Ed. 2012, 51, 1865; (b) I. Trehan., F. Morandi, L. C.
Blaszczak, B. K. Shoichet. Chemistry & Biology. 2002, 9, 971.
12 (a) I. Staub, S. A. Sieber, J. Am. Chem. Soc. 2008, 130, 13400;
(b) P. M. Pereira, S. R. Filipe, A. Tomasz, M. G. Pinho,
Antimicrob. Agents Chemother. 2007, 51, 3627; (c) Q. Shao,
B. G. Xing, Chem. Commun. 2012, 48, 1739; (d) B. G. Xing, K.
Ashot and J. H. Rao, J. Am. Chem. Soc. 2005, 127, 4158; (e) H.
Xie., K. H. Lee., M.H. Chang., H. A. Hassaounah., C. N.
Thornton., J. C. Sacchettini., J. D. Cirillo., J. Rao. Nat Chem.
Notes and references
1
2
(a) C. T. Walsh, Antibiotics Actions: Origins and Resistance,
ASM Press, Washington, DC, 1st edn, 2003; (b) J. F. Fisher, S.
O. Meroueh and S. Mobashery, Chem. Rev., 2005, 105, 395.
(a) G. Minasov, X. J. Wang, B. K. Shoichet, J. Am. Chem. Soc.
2002, 124, 5333; (c) C. Damblon, X. Raquet, L. Y. Lian, J.
Lamotte, R. Brasseur, E. Fonze, P. Charlier, G. C. K. Roberts, J.
M. Frere, Proc. Natl. Acad. Sci. USA. 1996, 93, 1747; (d) E. C.
Nannini, K. V. Singh and B. E. Murray, Clin. Infect. Dis. 2003,
37, 1194.
3
4
K. Bush., G. A. Jacoby. Antimicrob Agents Chemother. 2010,
54, 969.
(a) M.F. Chellat., L. Raguz., R. Riedl. A. Angew. Chem. Int. Ed.
2016, 53, 6600. (b) G. Minasov, X. J. Wang, B. K. Shoichet, J.
Am. Chem. Soc. 2002, 124, 5333.; (c) Bagge, N., Hentzer, M.,
2012, 4, 802.; (f) Z. M. Yang, P . L. Ho, G . L. Liang, K. H.
Chow, Q. G. Wang,Y . Cao, Z. H. Guo, B. Xu, J. Am. Chem. Soc.
2007, 129, 266., (g) G. Zlokarnik, P. A. Negulescu, T. E.
Knapp,L. Mere,N Burres, L. Feng,M. Whitney, K. Roemer, R.
Y. Tsien, Science. 1998, 279, 84. (h) R. R. Liu, R. Liew, J. Zhou
and B. G. Xing, Angew. Chem. Int. Ed. 2007, 46, 8799.
Andersen, J. B., Ciofu, O., Givskov, M.,
& Høiby, N.
Antimicrob Agents Chemother. 2004, 48, 1168; (d) Doi, Y., &
Paterson, D. L. Int. J. Infect. Dis. 2007, 11, 191.
(a) H. C. Flemming and J. Wingender, Nat. Rev. Microbiol.
5
2010, 8, 623; (b) Fröls, S. Biochem. Soc. Trans. 2013, 41, 393.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins