Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C5CC02226F
COMMUNICATION
Journal Name
Fujita, J. Am. Chem. Soc., 2002, 124, 11570-11571; c) F. Ibukuro, T.
Kusukawa and M. Fujita, J. Am. Chem. Soc., 1998, 120, 8561-8562;
means that they are no longer able to interact with both of cis-
ammine ligands of cisplatin in a chelating fashion. Addition
of
d) M. M. J. Smulders, S. Zarra and J. R. Nitschke, J. Am. Chem. Soc.
,
AgBF4 (4 eq.) to these mixtures of M, L and guest molecules
resulted in the reformation of the cage C and restored the host-
guest interactions (Fig. 3g and 3k).
2013, 135, 7039-7046.
8. G. H. Clever, S. Tashiro and M. Shionoya, J. Am. Chem. Soc., 2010,
132, 9973-9975.
9. A. K.-W. Chan, W. H. Lam, Y. Tanaka, K. M.-C. Wong and V. W.-
W. Yam, Proc. Natl. Acad. Sci. U. S. A., 2015, 112, 690-695.
10. M. Han, R. Michel, B. He, Y.-S. Chen, D. Stalke, M. John and G. H.
Clever, Angew. Chem., Int. Ed., 2013, 52, 1319-1323.
11. Q. Gan, T. K. Ronson, D. A. Vosburg, J. D. Thoburn and J. R.
Nitschke, J. Am. Chem. Soc., 2015, 137, 1770-1773.
In conclusion we have developed
a new diglyme
substituted [Pd2L4]4+ cage which can be cleanly converted into
[Pd2L2Cl4] metallo-macrocycle upon the addition of four
equivalents of chloride. The initial [Pd2L4]4+ cage can be
quantitatively reformed by treating the mixture of [Pd2L2Cl4] 12. P. Mal, D. Schultz, K. Beyeh, K. Rissanen and J. R. Nitschke,
Angew. Chem., Int. Ed., 2008, 47, 8297-8301.
and 2L with Ag(I) ions. The cage showed the capacity to bind
13. N. Kishi, M. Akita, M. Kamiya, S. Hayashi, H.-F. Hsu and M.
two cisplatin molecules within the internal cavity of the
Yoshizawa, J. Am. Chem. Soc., 2013, 135, 12976-12979.
architecture and two mesylate anions on the exterior face, or
all four guests simultaneously. Additionally, it was
demonstrated that the guest molecules, bound either endo-
(within the cage cavity) or exo-hedrally on the exterior face of
the Pd(II) cage, were released into solution on chloride
triggered cage dis-assembly and taken up anew on re-
assembly.
As Pd(II)-based systems24 are one of the most common
classes of metallosupramolecular architectures we are now
examining if this chloride triggered cage dis-assembly can be
applied to other larger Pd(II)-containing assemblies. The ability
14. N. Kishi, M. Akita and M. Yoshizawa, Angew. Chem., Int. Ed., 2014,
53, 3604-3607.
15. a) S. V. Kumar, W. K. C. Lo, H. J. L. Brooks and J. D. Crowley,
Inorg. Chim. Acta, 2015, 425, 1-6; b) A. Noor, S. C. Moratti and J. D.
Crowley, Chem. Sci., 2014, 5, 4283-4290; c) S. K. Vellas, J. E. M.
Lewis, M. Shankar, A. Sagatova, J. D. A. Tyndall, B. C. Monk, C. M.
Fitchett, L. R. Hanton and J. D. Crowley, Molecules, 2013, 18, 6383-
6407; d) S. O. Scott, E. L. Gavey, S. J. Lind, K. C. Gordon and J. D.
Crowley, Dalton Trans., 2011, 40, 12117-12124; e) K. J. Kilpin, U.
S. D. Paul, A.-L. Lee and J. D. Crowley, Chem. Commun., 2011, 47
,
328-330; f) J. D. Crowley, I. M. Steele and B. Bosnich, Eur. J. Inorg.
Chem., 2005, 3907-3917; g) J. D. Crowley, A. J. Goshe and B.
Bosnich, Chem. Commun., 2003, 2824-2825.
16. J. E. M. Lewis, E. L. Gavey, S. A. Cameron and J. D. Crowley,
Chem. Sci., 2012, 3, 778-784.
to
controllably
release
or
recall
guests
from
17. a) V. Gudipati, D. P. Curran and C. S. Wilcox, J. Org. Chem., 2006,
71, 3599-3607; b) K. J. Kilpin, M. L. Gower, S. G. Telfer, G. B.
Jameson and J. D. Crowley, Inorg. Chem., 2011, 50, 1123-1134.
18. a) Recently, Clever and co-workers have shown that halide ions can
trigger the conversion of [Pd2L4]4+ cage into a triply catenated link
structure see; b) R. Zhu, J. Luebben, B. Dittrich and G. H. Clever,
Angew. Chem., Int. Ed., 2015, 54, 2796-2800.
metallosupramolecular architectures has potential in wide-
ranging applications such as drug delivery, catalysis and
environmental remediation.
This work was supported by an Otago Medical Research
Foundation Laurenson Award (LA307). The authors thank
Department of Chemistry, University of Otago for additional
funding. DP and WKCL thank the University of Otago for PhD
scholarships. DP thanks Otago Medical Research Foundation
for a McQueen Summer Studentship.
19. a) J. E. M. Lewis, A. B. S. Elliott, C. J. McAdam, K. C. Gordon and
J. D. Crowley, Chem. Sci., 2014, 5, 1833-1843; b) J. E. M. Lewis, C.
J. McAdam, M. G. Gardiner and J. D. Crowley, Chem. Commun.
2013, 49, 3398-3400.
,
20. J. E. M. Lewis and J. D. Crowley, Supramol. Chem., 2014, 26, 173-
181.
21. a) A wide range of sulfonate anions have been shown to interact with
Pd(II) metallo-cage architectures see; b) G. H. Clever, S. Tashiro and
M. Shionoya, Angew. Chem., Int. Ed., 2009, 48, 7010-7012; c) G. H.
Clever and M. Shionoya, Chem. Eur. J., 2010, 16, 11792-11796; d)
M. Fukuda, R. Sekiya and R. Kuroda, Angew. Chem., Int. Ed., 2008,
Notes and references
1. a) For some selected recent reviews see; b) T. K. Ronson, S. Zarra, S.
P. Black and J. R. Nitschke, Chem. Commun., 2013, 49, 2476-2490;
c) M. M. J. Smulders, I. A. Riddell, C. Browne and J. R. Nitschke,
Chem. Soc. Rev., 2013, 42, 1728-1754; d) M. Han, D. M. Engelhard
and G. H. Clever, Chem. Soc. Rev., 2014, 43, 1848-1860; e) K.
Harris, D. Fujita and M. Fujita, Chem. Commun., 2013, 49, 6703-
6712.
47, 706-710; e) R. Sekiya and R. Kuroda, Chem. Commun., 2011, 47
,
12346-12348; f) R. Sekiya, M. Fukuda and R. Kuroda, J. Am. Chem.
Soc., 2012, 134, 10987-10997; g) N. J. Cookson, J. J. Henkelis, R. J.
Ansell, C. W. G. Fishwick, M. J. Hardie and J. Fisher, Dalton Trans.
,
2014, 43, 5657-5661.
22. A. S. Meyer, Jr. and G. H. Ayres, J. Am. Chem. Soc., 1957, 79, 49-
53.
23. a) During the course of our work, Clever and co-workers have shown
that halide ions can trigger guest exchange in a double cage system
see; b) S. Löffler, J. Lübben, L. Krause, D. Stalke, B. Dittrich and G.
H. Clever, J. Am. Chem. Soc., 2015, 137, 1060-1063.
2. a) B. Therrien, CrystEngComm, 2015, 17, 484-491; b) S. Zarra, D.
M. Wood, D. A. Roberts and J. R. Nitschke, Chem. Soc. Rev., 2015,
44, 419-432; c) M. D. Ward and P. R. Raithby, Chem. Soc. Rev.
2013, 42, 1619-1636; d) T. R. Cook, V. Vajpayee, M. H. Lee, P. J.
Stang and K.-W. Chi, Acc. Chem. Res., 2013, 46, 2464-2474.
,
3. a) P. Mal, B. Breiner, K. Rissanen and J. R. Nitschke, Science, 2009,
324, 1697-1699; b) M. Yamashina, Y. Sei, M. Akita and M.
24. N. B. Debata, D. Tripathy and D. K. Chand, Coord. Chem. Rev.
,
2012, 256, 1831-1945.
Yoshizawa, Nat. Commun., 2014, 5.
4. I. A. Riddell, M. M. J. Smulders, J. K. Clegg and J. R. Nitschke,
Chem. Commun., 2011, 47, 457-459.
5. a) Z. J. Wang, K. N. Clary, R. G. Bergman, K. N. Raymond and F. D.
Toste, Nat. Chem., 2013, 5, 100-103; b) M. J. Wiester, P. A. Ulmann
and C. A. Mirkin, Angew. Chem., Int. Ed., 2011, 50, 114-137.
6. a) W. Cullen, S. Turega, C. A. Hunter and M. D. Ward, Chem. Sci.
,
2015,
6,
625-631; b) Y.-R. Zheng, K. Suntharalingam, T. C.
Johnstone and S. J. Lippard, Chem. Sci., 2015,
6, 1189-1193; c) F.
Schmitt, J. Freudenreich, N. P. E. Barry, L. Juillerat-Jeanneret, G.
Suss-Fink and B. Therrien, J. Am. Chem. Soc., 2012, 134, 754-757.
7. a) J. D. Crowley, A. J. Goshe, I. M. Steele and B. Bosnich, Chem.
Eur. J., 2004, 10, 1944-1955; b) W.-Y. Sun, T. Kusukawa and M.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins