cations are identified to adopt a rare finite helical shape (called
‘helicate’) which is stabilised by the weak interactions between
+
sulfur and NH3 units. The so called ‘ladder-like’ hydrogen-
Notes and references
1 G. R. Desiraju in ‘‘Crystal Engineering: The Design of Organic
Solids’’. Elsevier, 1989.
bonded motifs observed in 1, 3 and 6 is prevalent in the litera-
ture.21
2 (a) A. D. Bond, CrystEngComm, 2007, 9, 833; (b) G. R. Desiraju,
CrystEngComm, 2003, 5, 466; (c) J. D. Dunitz, CrystEngComm,
2003, 5, 506; (d) C. B. Aakeroy and D. J. Salmon, CrystEngComm,
2005, 7, 439; (e) M. J. Zaworotko, Cryst. Growth Des., 2007, 7, 4.
3 (a) N. Shan and M. J. Zaworotko, Drug Discovery Today, 2008, 13,
440; (b) P. Vishweshwar, J. A. McMahon, J. A. Bis and
M. J. Zaworotko, J. Pharm. Sci., 2006, 95, 499.
4 T. Steiner, I. Majerz and C. C. Wilson, Angew. Chem., Int. Ed., 2001,
40, 2651.
5 (a) S. Mohamed, D. A. Tocher, M. Vickers, P. G. Karamertzanis and
S. L. Price, Cryst. Growth Des., 2009, 9, 2881; (b) O. Felix,
M. W. Hosseini, A. De Cian and J. Fischer, Angew. Chem., Int. Ed.
Engl., 1997, 36, 102.
These results observed for 3 motivated us to find out
another salt (9) of H2SDC with 3,30-dipropylamino amine
[H2NCH2CH2CH2N(H)CH2CH2CH2NH2], where NH and NH2
groups are separated by trimethylene chain. The salt of compo-
sition, C60H86N6O20x undergoes 62% photodimarization upon
irradiation under UV light for 40 h. Although we were unable to
grow data collection quality single crystals, the result helps us to
understand the relation between the chain length of the diamine
and the parallel stacking of SDC2ꢀ anion. An infinite arrange-
ment of the SDC2ꢀ anions is proposed to account for the partial
solid-state photochemical activity. In the series of these salts we
have studied the ammonium salt (10)x (by reacting H2SDC with
NH4OH) of the same carboxylate. To our disappointment we
were unable to grow suitable single crystals of data collection
quality. However, the salt was found to undergo 80% photo-
dimerization after 50 h of irradiation under UV light. Although
we do not have the solid state structure of this salt, the orienta-
tion of the SDC2ꢀ anions can be predicted to be parallel.
For the purpose of aligning SDC2ꢀ anions in parallel orienta-
tion we basically need two hydrogen atoms in the protonated
amines. We see three hydrogen atoms available in the protonated
form of the primary amines to form charge assisted hydrogen
bonding. We therefore, have chosen piperizine as a secondary
amine which can thus serve the purpose. Yet it is observed that
C]C bonds in the SDC2ꢀ anions are not in parallel alignment in
the solid state structure of 8. At this stage, it is thus a very
formidable task to design or predict the solid state structure of
organic salts where the robust and non-directional charge assisted
hydrogen bonding predominant in the solid state architecture.
More work should be carried out in order to understand whether
these types of non-covalent interactions can be reliably employed
to rationally design the molecular packing in the solid state.
6 (a) B. R. Bhogala, S. Basavoju and A. Nangia, CrystEngComm, 2005,
7, 551; (b) S. L. Childs, G. P. Stahly and A. Park, Mol. Pharmacol.,
2007, 4, 323.
7 G. M. J. Schmidt, Pure Appl. Chem., 1971, 27, 647.
8 (a) Y. Ito, B. Borecka, J. Trotter and J. R. Scheffer, Tetrahedron Lett.,
1995, 36, 6083; (b) Y. Ito, B. Borecka, G. Olovsson, J. Trotter and
J. R. Scheffer, Tetrahedron Lett., 1995, 36, 6087; (c) H. Hosomi,
Y. Ito and S. Ohba, Acta Crystallogr., Sect. C: Cryst. Struct.
Commun., 1998, 54, 142; (d) Y. Ito, T. Kitada and M. Horiguchi,
Tetrahedron, 2003, 59, 7323; (e) A. Natarajan, J. T. Mague,
K. Venkatesan and V. Ramamurthy, Org. Lett., 2005, 7, 1895; (f)
M. Chowdhury and B. M. Kariuki, Cryst. Growth Des., 2006, 6, 774.
9 (a) S. Yamada, N. Uematsu and K. Yamashita, J. Am. Chem. Soc.,
2007, 129, 12100; (b) S. Yamada and Y. Tokugawa, J. Am. Chem.
Soc., 2009, 131, 2098; (c) G. K. Kole, G. K. Tan and J. J. Vittal,
~
Org. Lett., 2010, 12, 128; (d) M. Linares and A. Briceno, New
J. Chem., 2010, 34, 587.
10 (a) L. R. MacGillivray, J. L. Reid and J. A. Ripmeester, J. Am. Chem.
ꢂꢂ ꢃ
Soc., 2000, 122, 7817; (b) T. Friscic and L. R. MacGillivray, Chem.
ꢂꢂ ꢃ
Commun., 2005, 5748; (c) T. Friscic, D. M. Drab and
L. R. MacGillivray, Org. Lett., 2004, 6, 4647; (d) N. Shan and
W. Jones, Tetrahedron Lett., 2003, 44, 3687; (e) D. B. Varshney,
ꢂꢂ ꢃ
X. Gao, T. Friscic and L. R. MacGillivray, Angew. Chem., Int. Ed.,
2006, 45, 646; (f) R. Santra and K. Biradha, CrystEngComm, 2008,
10, 1524; (g) X. Mei, S. Liu and C. Wolf, Org. Lett., 2007, 9, 2729;
~
(h) C. Avendano and A. Briceno, CrystEngComm, 2009, 11, 408.
11 (a) G. R. Desiraju, Angew. Chem., Int. Ed. Engl., 1995, 34, 2311; (b)
B. Sarma, N. K. Nath, B. R. Bhogala and A. Nangia, Cryst.
Growth Des., 2009, 9, 1546; (c) B. R. Bhogala, P. Vishweshwar and
A. Nangia, Cryst. Growth Des., 2005, 5, 1271; (d) A. Ballabh,
D. R. Trivedi and P. Dastidar, Cryst. Growth Des., 2005, 5, 1545;
(e) J. C. MacDonald, P. C. Dorrestein and M. M. Pilley, Cryst.
€
Growth Des., 2001, 1, 29; (f) C. B. Aakeroy, A. M. Beatty and
Conclusions
B. A. Helfrich, J. Am. Chem. Soc., 2002, 124, 14425.
12 M. Etter, Acc. Chem. Res., 1990, 23, 120.
In this contribution, we have analysed the crystals structure of
a series of molecular salts of H2SDC to exhibit interesting
patterns and packing. The complex nature of the supramolecular
synthons is due to the less directional nature of electrostatic
interaction over predictable H-bonding interactions. SDC2ꢀ can
be aligned parallel with a distance suitable for [2 + 2] cycload-
dition reaction in the molecular salt with 1,3-diaminopropane
that leads to the synthesis of the dimer compound in quantitative
yield. It appears that there must have some correlation between
the orientation of SDC dianions and the chain length of the
diamines in the series.
13 G. K. Kole, L. L. Koh, S. Y. Lee, S. S. Lee and J. J. Vittal, Chem.
Commun., 2010, 46, 3660.
14 (a) W. G. Toland, J. Wilkes and F. J. Brutschy, J. Am. Chem. Soc.,
1953, 75, 2263; (b) W. G. Toland, J. Wilkes and F. J. Brutschy, J.
Am. Chem. Soc., 1954, 76, 307; (c) D. E. V. Sickle, J. Org. Chem.,
1991, 56, 3263; (d) A. I. Khalaf, A. R. Pitt, M. Scobie,
C. J. Suckling, J. Urwin, R. D. Waigh, R. V. Fishleigh,
S. C. Young and W. A. Wyliec, Tetrahedron, 2000, 56, 5225.
for pKa calculations.
16 (a) N. Mercier, A.-L. Barres, M. Giffard, I. Rau, F. Kajzar and
B. Sahraoui, Angew. Chem., Int. Ed., 2006, 45, 2100; (b) W. Bi,
N. Louvain, N. Mercier, J. Luc, I. Rau, F. Kajzar and B. Sahraoui,
Adv. Mater., 2008, 20, 1013; (c) N. Louvain, N. Mercier, J. Luc and
B. Sahraoui, Eur. J. Inorg. Chem., 2008, 3592.
17 (a) T. C. W. Mak and F. Xue, J. Am. Chem. Soc., 2000, 122, 9860; (b)
C.-K. Lam, F. Xue, J.-P. Zhang, X.-M. Chen and T. C. W. Mak, J.
Am. Chem. Soc., 2005, 127, 11536; (c) B. F. Abrahams,
M. G. Haywood and R. Robson, J. Am. Chem. Soc., 2005, 127,
816; (d) V. A. Russell, C. C. Evans, W. Li and M. D. Ward,
Science, 1997, 276, 575.
Acknowledgements
We gratefully acknowledge the Ministry of Education, Singapore
for the financial support through NUS FRC grant R-143-000-
371-112. We sincerely thank Hong Yimian for her kind help with
X-ray crystallography.
18 W.-Z. Xu, J. Sun, Z.-T. Huang and Q.-Y. Zheng, Chem. Commun.,
2009, 171.
3144 | CrystEngComm, 2011, 13, 3138–3145
This journal is ª The Royal Society of Chemistry 2011