W.-Q. Chen et al. / Inorganic Chemistry Communications 19 (2012) 4–9
9
(b) J. Huang, Q.X. Li, K. Xu, H.B. Su, J.L. Yang, Electronic, magnetic, and transport
properties of Fe-COT clusters: A theoretical study, J. Phys. Chem. C 114
(2010) 11946–11950;
(c) K.J. Teresa, J. Julia, K. Mariola, Mono- and polynuclear copper(II) complexes
with fragment of alloferons 1 and 2; combined potentiometric and spectroscopic
studies, Dalton Trans. 39 (2010) 4117–4125;
tetranuclear cage formed using phenyl 2-pyridyl ketone oxime and azide as ligands,
Inorg. Chem. Commun. 9 (2006) 638–641.
[11] (a) T.C. Stamatatos, A. Bell, P. Cooper, A. Terzis, C.P. Raptopoulou, S.L. Heath, R.E.P.
Winpenny, S.P. Perlepes, Old ligands with new coordination chemistry: Linear
trinuclear mixed oxidation state cobalt(III/II/III) complexes and their mononu-
clear ‘ligand’ cobalt(III) complexes featuring 2-pyridyloximates, Inorg. Chem.
Commun. 8 (2005) 533–538;
(d) A. Ozarowski, I.B. Szymanska, T. Muziol, J. Jezierska, High-field EPR and magnet-
ic susceptibility studies on binuclear and tetranuclear copper trifluoroacetate
complexes. X-ray structure determination of three tetranuclear quinoline ad-
ducts of copper(II) trifluoroacetate, J. Am. Chem. Soc. 131 (2009) 10279–10292.
[5] (a) S. Majumder, S. Sarkar, S. Sasmal, E.C. Sanudo, S. Mohanta, Heterobridged
dinuclear, tetranuclear, dinuclear-based 1-D, and heptanuclear-based 1-D
complexes of copper(II) derived from a dinucleating ligand: syntheses, structures,
magnetochemistry, spectroscopy, and catecholase activity, Inorg. Chem. 50 (2011)
7540–7554;
(b) T.C. Stamatatos, E. Katsoulakou, A. Terzis, C.P. Raptopoulou, R.E.P. Winpenny,
S.P. Perlepes, A family of mononuclear CoIII/2-pyridyloximate complexes and
their conversion to trinuclear, mixed-valence linear Co3II/III clusters, Polyhedron
28 (2009) 1638–1645.
[12] T. Afrati, A.A. Pantazaki, C. Dendrinou-Samara, C. Raptopoulou, A. Terzis, D.P.
Kessissoglou, Copper inverse-9-metallacrown-3 compounds interacting with
DNA, Dalton Trans. 39 (2010) 765–775.
[13] (a) C. Papatriantafyllopoulou, T.C. Stamatatos, W. Wernsdorfer, S.J. Teat, A.J.
Tasiopoulos, A. Escuer, S.P. Perlepes, Combining azide, carboxylate, and
2-pyridyloximate ligands in transition-metal chemistry: ferromagnetic Ni5II
clusters with a bowtie skeleton, Inorg. Chem. 49 (2010) 10486–10496;
(b) C.G. Efthymiou, A.A. Kitos, C.P. Raptopoulou, S.P. Perlepes, A. Escuer, C.
Papatriantafyllopoulou, Employment of the sulfate ligand in 3d-metal cluster
chemistry: A novel hexanuclear nickel(II) complex with a chair metal topol-
ogy, Polyhedron 28 (2009) 3177–3184;
(b) G. Maayan, G. Christou, Old clusters with new function: oxidation catalysis
by high oxidation state manganese and cerium/manganese clusters using
O2 gas, Inorg. Chem. 50 (2011) 7015–7021;
(c) A.G. Jarvis, A.C. Whitwood, I.J.S. Fairlamb, CuI complexes containing a multidentate
and conformationally flexible dibenzylidene acetone ligand (dbathiophos): Appli-
cation in catalytic alkene cyclopropanation, Dalton Trans. 40 (2011) 3695–3702;
(d) F. Laia, S. Xavier, E.A. Eduardo, B.B. Jordi, E. Lluis, L. Antoni, Synthesis, structure,
and reactivity of new tetranuclear Ru-Hbpp-based water-oxidation catalysts,
Inorg. Chem. 50 (2011) 2771–2781;
(c) C. Papatriantafyllopoulou, G. Aromi, A.J. Tasiopoulos, V. Nastopoulos, C.P.
Raptopoulou, S.J. Teat, A. Escuer, S.P. Perlepes, Use of the sulfato ligand in
3d-metal cluster chemistry: A family of hexanuclear nickel(II) complexes
with 2-pyridyl- substituted oxime ligands, Eur. J. Inorg. Chem. (2007) 2761–2774;
(d) C.G. Efthymiou, C.P. Raptopoulou, A. Terzis, S.P. Perlepes, A. Escuer, C.
Papatriantafyl- lopoulou, Triangular Ni(II) complexes from the use of 2-
pyridyl oximes, Polyhedron 29 (2010) 627–633.
(e) M. Panera, J. Diez, I. Merino, E. Rubio, M.P. Gamasa, Synthesis of copper(I)
complexes containing enantiopure pybox ligands: first assays on enantioselective
synthesis of propargylamines catalyzed by isolated copper(I) complexes, Inorg.
Chem. 48 (2009) 11147–11160.
[6] (a) D. Peri, S. Meker, M. Shavit, E.Y. Tshuva, Synthesis, characterization, cytotoxicity,
and hydrolytic behavior of C2- and C1-symmetrical TiIV complexes of tetradentate
diamine bis(phenolato) ligands: a new class of antitumor agents, Chem. Eur. J. 15
(2009) 2403–2415;
[14] J. Martinez, I. Aiello, A. Bellusci, A. Crispini, M. Ghedini, Tetranuclear zinc complexes
of ligands containing the 2-pyridyl oxime chelating site, Inorg. Chim. Acta 361
(2008) 2677–2682.
(b) T. Enzo, B. Alessandro, B. Lorena, C. Giancarlo, D.C. Daniela, F. Franco, J.
Bhagavathsingh, A. Silvio, Highly shifted LIPOCEST agents based on the encapsula-
tion of neutral polynuclear paramagnetic shift reagents, Chem. Commun. (2008)
600–602;
(c) S. Nadine, M. Joachim, P. Ralph, V.E. Rudi, Possible biotransformation reactions
of polynuclear Pt(II) complexes, Inorg. Chem. 46 (2007) 2094–2104;
(d) Z.G. Xiao, F. Loughlin, G.N. George, G.J. Howlett, A.G. Wedd, C-Terminal domain
of the membrane copper transporter Ctr1 from saccharomyces cerevisiae binds
four Cu(I) ions as a cuprous-thiolate polynuclear cluster: sub-femtomolar Cu(I)
affinity of three proteins involved in copper trafficking, J. Am. Chem. Soc. 126
(2004) 3081–3090.
[15] M. Mohan, B.D. Paramhans, Transition metal chemistry of oxime-containing ligands,
part XIV. Iron(II) complexes of syn-phenyl-2-pyridylketoxime and syn-methyl-2-
pyridylketoxime, Croat. Chem. Acta 54 (1981) 173–182.
[16] R. Naik, M.A. Pasha, Ultrasound promoted deoximation by FeCl3: A highly efficient,
mild and expeditious approach, Indian J. Chem. 44B (2005) 778–782.
[17] Crystallographic analysis of 1 (C48H40Cl8N4Fe4O4): M =1243.84, Monoclinic, C2/c,
crystal size 0.32×0.16×0.12 mm, V=5395.2(19) Å3, a=20.786(4) Å,
b=14.601(3) Å, c=17.822(4) Å, β=94.09(3)°, T=293(2) K, Z=4, ρcal
=
1.531 Mg/m3, Mo K(α1)=0.71073 Å. 27546 reflections measured, of which 8168
were unique. R1=0.0491, wR2=0.1302, GooF=1.072. The structure was solved
by direct methods (SHELXS-97) and refined with SHELXS-97.
[7] (a) D.F. Weng, W.H. Mu, X.J. Zheng, D.C. Fang, L.P. Jin, Hydrothermal in situ syn-
thesis and characterization of Cu(II) complexes, Inorg. Chem. 47 (2008)
1249–1251;
[18] Crystallographic analysis of
2 (C156H138N24Fe6O20): M =3004.00, Monoclinic,
P21/n, crystal size 0.24×0.23×0.20 mm, V =6833.7(3) Å3, a=16.1295(4) Å,
b=23.3839(6) Å, c=18.1708(4) Å, β=94.35(10)°, T=296(2) K, Z=2, ρcal
=
(b) Q.L. Zhu, T.L. Sheng, C.H. Tan, S.M. Hu, R.B. Fu, X.T. Wu, Formation of Zn(II) and
Cd(II) coordination polymers assembled by triazine-based polycarboxylate and
in-situ-generated pyridine-4-thiolate or dipyridylsulfide ligands: observation of
an unusual luminescence thermochromism, Inorg. Chem. 50 (2011) 7618–7624;
(c) M. Sada, S. Matsubara, Transition-metal chloride mediated addition reaction
of diorganomagnesium to easily enolizable ketones, Tetrahedron 67 (2011)
2612–2616.
1.460 Mg/m3, Mo K(α1)=0.71073 Å. 65728 reflections measured, of which
16928 were unique. R1=0. 0487, wR2=0.1250, GooF=1.016. The structure was
solved by direct methods (SHELXS-97) and refined with SHELXS-97.
[19] (a) Y.L. Miao, J.L. Liu, Z.J. Lin, Y.C. Ou, J.D. Leng, M.L. Tong, Synthesis, structures,
adsorption behavior and magnetic properties of a new family of polynuclear
iron clusters, Dalton Trans. 39 (2010) 4893–4902;
(b) S. Ross, T. Weyhermuller, E. Bill, K. Wieghardt, P. Chaudhuri, Tris(pyridinealdoxi-
mato)metal complexes as ligands for the synthesis of asymmetric heterodinuclear
CrIIIM species [M = Zn(II), Cu(II), Ni(II), Fe(II), Mn(II), Cr(II), Co(III)]: A magneto-
structural study, Inorg. Chem. 40 (2001) 6656–6665;
(c) T.C. Stamatatos, A.K. Boudalis, Y. Sanakis, C.P. Raptopoulou, Reactivity and
structural and physical studies of tetranuclear iron(III) clusters containing
the [Fe4(μ3-O)2]8+ “Butterfly” core: an Fe4IIIcluster with an S = 1 ground
state, Inorg. Chem. 45 (2006) 7372–7381;
[8] C.J. Milios, T.C. Stamatatos, S.P. Perlepes, The coordination chemistry of pyridyl
oximes, Polyhedron 25 (2006) 134–194.
[9] (a) C.J. Milios, E. Kefalloniti, C.P. Raptopoulou, A. Terzis, R. Vicente, N. Lalioti, A.
Escuer, S.P. Perlepes, Octanuclearity and tetradecanuclearity in manganese
chemistry: an octanuclear manganese(II)/(III) complex featuring the novel
[Mn8(μ4- O)2(μ3-OH)2]14+ core and [Mn Mn4IIIO4(O2CMe)20{(2-py)2C(OH)
II
10
O}4](2-py = 2-pyridyl), Chem. Commun. (2003) 819–821;
(b) C.J. Milios, T.C. Stamatatos, P. Kyritsis, A. Terzis, C.P. Raptopoulou, R. Vicente,
A. Escuer, S.P. Perlepes, Phenyl 2-pyridyl Ketone and its oxime in manganese
carboxylate chemistry: synthesis, characterization, X-ray studies and magnetic
properties of mononuclear, trinuclear and octanuclear complexes, Eur. J. Inorg.
Chem. (2004) 2885–2901;
(c) C.C. Stoumpos, R. Inglis, O. Roubeau, H. Sartzi, A.A. Kitos, C.J. Milios, G. Aromı,
A.J. Tasiopoulos, V. Nastopoulos, E.K. Brechin, S.P. Perlepes, Rare oxidation-state
combinations and unusual structural motifs in hexanuclear Mn complexes
using 2-pyridyloximate ligands, Inorg. Chem. 49 (2010) 4388–4390.
(d) J.D. Oliver, D.F. Mullica, B.B. Hutchinson, W.O. Milligan, Iron-nitrogen bond
lengths in low-spin and high-spin iron(II) complexes with poly(pyrazolyl)
borate ligands, Inorg. Chem. 19 (1980) 165–169.
[20] O. Kahn, Molecular Magnetism, VCH Publishers Inc, 1993.
[21] M.J. Frisch, et al., Gaussian 03, revision B.04, Gaussian, Inc, Pittsburgh, PA, 2003
The full citation is given in the Supporting Information.
[22] (a) C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785–789;
(b) B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett. 157 (1989) 200–206;
(c) A.D. Becke, J. Chem. Phys. 98 (1993) 5648–5652.
[10] C.J. Milios, S. Piligkos, A.R. Bell, R.H. Laye, S.J. Teat, R. Vicente, E. McInnes, A.
Escuerc, S.P. Perlepes, R.E.P. Winpenny, A rare mixed-valence state manganese(II/IV)