Organometallics
ARTICLE
’ CONCLUSIONS
(4) de Frꢀemonta, P.; Marionb, N.; Nolanb, S. P. Coord. Chem. Rev.
2009, 253, 862.
The reactions of lanthanide atoms and CHF3 were studied
using matrix isolation infrared spectroscopy and theoretical
calculations. The major product for all of the lanthanide atoms
is the fluoromethylene lanthanide difluoride complex, HC-
(F)LnF2, with an unusual bridged fluorine. The reaction product
is proposed to be formed via insertion of the Ln into a CÀF bond
followed by the transfer of a second fluorine. In most cases, the
DFT calculations predict that the bridged HC(F)LnF2 structures
are slightly more stable than the open HFCLnF2 isomers. The
unusual blue shift of the bridged CÀ(F) stretching frequency
from neon to argon arises from the stronger interaction between
argon atom(s) and the metal center of the lanthanide difluoride
complex, which weakens the LnÀ(F) bridge-bonding interaction
and allows the CÀ(F) stretching frequency to increase. The
formation of the bridge bonded F atom is consistent with the
need for the CHF fragment to be in the triplet state to bind to the
Ln. An energy on the order of 11 kcal/mol (calculated) is
required to excite CHF from the ground-state singlet. The
formation of the triplet CHF increases the HCF bond angle
and the negative charge on the F so that the F can interact with
the Ln to further stabilize the LnÀC interaction. The participa-
tion of the triplet CHF fragment is consistent with the presence
of an unpaired electron on the C.
(5) Giesbrecht, G. R.; Gordon, J. C. Dalton Trans. 2004, 33, 2387.
(6) Andrews, L.; Cho, H.-G. Organometallics 2006, 25, 4040.
(7) (a) Mills, D. P.; Soutar, L.; Lewis, W.; Blake, A. J.; Liddle, S. T.
J. Am. Chem. Soc. 2010, 132, 14379. (b) Mills, D. P.; Cooper, O. J.;
McMaster, J.; Lewis, W.; Liddle, S. T. Dalton Trans. 2009, 4547.
(c) Liddle, S. T.; McMaster, J.; Green, J. C.; Arnold, P. L. Chem.
Commun. 2008, 1747.
(8) Zimmermann, M.; Rauschmaier, D.; Eichele, K.; Toernroos,
K. W.; Anwander, R. Chem. Commun. 2010, 46, 5346.
(9) Scott, J.; Fan, H.; Wicker, B. F.; Fout, A. R.; Baik, M. H.;
Mindiola, D. J. J. Am. Chem. Soc. 2008, 130, 14438.
(10) (a) Fustier, M.; Le Goff, X. F.; Le Floch, P.; Mezailles, N. J. Am.
Chem. Soc. 2010, 132, 13108. (b) Cantat, T.; Mezailles, N.; Auffrant, A.;
Le Floch, P. Dalton Trans. 2008, 37, 1957. (c) Cantat, T.; Jaroschik, F.;
Nief, F.; Ricard, L.; Mezailles, N.; Le Floch, P. Chem. Commun.
2005, 5178. (d) Cantat, T.; Jaroschik, F.; Ricard, L.; Le Floch, P.; Nief,
F.; Mezailles, N. Organometallics 2006, 25, 1329. (e) Buchard, A.;
Auffrant, A.; Ricard, L.; Le Goff, X. F.; Platel, R. H.; Williams, C. K.;
Le Floch, P. Dalton Trans. 2009, 10219. (f) Dietrich, H. M.; Toernroos,
K. W.; Anwander, R. J. Am. Chem. Soc. 2006, 128, 9298.
(11) Cho, H. G.; Andrews, L. Organometallics 2007, 26, 633.
(12) Cho, H. G.; Andrews, L. J. Phys. Chem. A 2007, 111, 2480.
(13) Cho, H. G.; Andrews, L. Inorg. Chim. Acta 2008, 361, 551.
(14) (a) Lyon, J. T.; Andrews, L. Inorg. Chem. 2007, 46, 4799.
(b) Lyon, J. T.; Andrews, L. Organometallics 2006, 25, 1341. (c) Cho,
H. G.; Andrews, L. Inorg. Chem. 2005, 44, 979. (d) Cho, H. G.; Andrews,
L. Organometallics 2004, 23, 4357. (e) Cho, H. G.; Andrews, L. J. Am.
Chem. Soc. 2004, 126, 10485. (f) Cho, H. G.; Andrews, L. Inorg. Chem.
2004, 43, 5253. (g) Cho, H. G.; Andrews, L. J. Phys. Chem. A 2004,
108, 6294.
(15) (a) Cho, H. G.; Andrews, L. J. Phys. Chem. A 2006, 110, 10063.
(b) Cho, H. G.; Andrews, L. Organometallics 2006, 25, 477.
(16) (a) Lyon, J. T.; Cho, H. G.; Andrews, L. Organometallics 2007,
26, 6373. (b) Cho, H. G.; Andrews, L. J. Phys. Chem. A 2006, 110, 13151.
(c) Cho, H. G.; Andrews, L. Organometallics 2005, 24, 5678. (d) Cho,
H. G.; Andrews, L. Chem.—Eur. J. 2005, 11, 5017.
(17) (a) Lyon, J. T.; Andrews, L. Eur. J. Inorg. Chem. 2008, 1047.
(b) Andrews, L.; Cho, H.-G. J. Phys. Chem. A 2005, 109, 6796. (c) Lyon,
J. T.; Andrews, L. Inorg. Chem. 2005, 44, 8610.
’ ASSOCIATED CONTENT
S
Supporting Information. Figure S1: infrared spectra of
b
laser-ablated Lu atoms and CHF3 reaction products in solid
argon at 4 K; Figure S2: infrared spectra of laser-ablated Lu atoms
and CHF3 reaction products in solid neon at 4 K; Table S1:
calculated reaction and isomerization energies and frequencies
for open HFCLnF2 and DFCLnF2 except for Ln = La and Ce;
Table S2: calculated reaction and isomerization energies and
frequencies for the dibridged HC(FF)-LnF; Table S3: optimized
Cartesian x, y, z coordinates. This material is available free of
(18) (a) Lyon, J. T.; Andrews, L.; Hu, H.-S.; Li, J. Inorg. Chem. 2008,
47, 1435. (b) Lyon, J. T.; Andrews, L.; Malmqvist, P. A.; Roos, B. O.;
Wang, T.; Bursten, B. E. Inorg. Chem. 2007, 46, 4917. (c) Lyon, J. T.;
Andrews, L. Inorg. Chem. 2006, 45, 1847.
(19) Chen, M. Y.; Dixon, D. A.; Wang, X. F.; Cho, H. G.; Andrews, L.
J. Phys. Chem. A 2011, 115, 5609 (Ln+CH3F).
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: lsa@virginia.edu, dadixon@as.ua.edu.
(20) Wang, X. F.; Cho, H. G.; Andrews, L.; Chen, M. Y.; Dixon,
D. A.; Hu, H. S.; Li, J. J. Phys. Chem. A 2011, 115, 1913 (Ln+CH2F2).
(21) (a) Andrews, L.; Citra, A. Chem. Rev. 2002, 102, 885. (b) Andrews,
L. Chem. Soc. Rev. 2004, 33, 123.
(22) (a) Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864.
(b) Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133. (c) Parr, R. G.;
Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford Univ.
Press: Oxford, 1989. (d) Salahub, E. D. R.; Zerner, M. C. The Challenge
of d and f Electrons; ACS: Washington, D.C., 1989.
(23) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.;
Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.;
Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.;
Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima,
T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.;
Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin,
K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.;
Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.;
Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.;
Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.;
Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.;
’ ACKNOWLEDGMENT
We gratefully acknowledge financial support from DOE Office
of Science, Basic Energy Sciences Grant No. DE-SC0001034 and
NCSA computing Grant No. CHE07-0004N (University of Virginia)
and Grant No. DE-FG02-03ER15481 (University of Alabama).
D.A.D. thanks the Robert Ramsay Fund at the University of
Alabama for partial support. J. Thrasher (University of Alabama)
kindly provided the CDF3 sample.
’ REFERENCES
(1) (a) Schrock, R. R. Chem. Rev. 2002, 102, 145. (b) Schrock, R. R.;
Hoveyda, A. H. Angew. Chem., Int. Ed. 2003, 42, 4592. (c) Schrock, R. R.
Chem. Commun. 2005, 2773.
(2) (a) Scott, J.; Mindiola, D. J. Dalton Trans. 2009, 38, 2387.
(b) Mindiola, D. J.; Scott, J. Nat. Chem. 2011, 3, 15.
(3) (a) Herndon, J. W. Coord. Chem. Rev. 2006, 250, 1889. (b) Harder,
S. Coord. Chem. Rev. 2011, 255, 1252.
4451
dx.doi.org/10.1021/om200533q |Organometallics 2011, 30, 4443–4452