M. Yan et al. / Tetrahedron: Asymmetry 11 (2000) 845–849
849
Lb: 31P NMR (CDCl3): δ 142.3 ppm. 1H NMR (CDCl3, 400 MHz): δ 1.67 (s, 6H), 2.29 (s, 6H), 7.09
(m, 10H), 7.33 (m, 10H), 7.49 (d, J 8.8 Hz, 2H), 7.64 (s, 2H), 7.68 (d, J 8.0 Hz, 2H), 7.75 (d, J 8.0 Hz,
2H), 7.83 (d, J 8.0 Hz, 2H), 7.87 (d, J 8.8 Hz, 2H). 13C NMR (CDCl3): δ 16.9, 17.3, 120.6, 120.7, 122.0,
123.0, 124.5, 124.8, 124.9, 125.1, 125.8, 126.0, 126.8, 126.9, 127.4, 127.47, 128.0, 129.2, 129.6, 130.0,
130.08, 130.2, 130.9, 131.0, 131.3, 131.5, 133.8, 146.0, 147.5, 147.7 ppm. MS (ESI): 971 (M++1, 10%).
20
D
Mp: 202–204°C. [α] =+459.7 (c 0.81, benzene).
Lc: 31P NMR (CDCl3): δ 145.7 ppm. 1H NMR (CDCl3, 400 MHz): δ 1.55 (s, 6H), 6.52 (d, J 8.8 Hz,
2H), 7.16–7.27 (m, 12H), 7.29–7.42 (m, 8H), 7.51 (d, J 8.8 Hz, 2H), 7.73 (d, J 8.0 Hz, 2H), 7.79 (d, J 8.8
Hz, 2H), 7.83 (d, J 8.0 Hz, 2H), 7.89 (d, J 8.0 Hz, 2H), 7.97 (d, J 8.8 Hz, 2H). MS (ESI): 943 (M++1,
20
17%). Mp: 168–170°C. [α] =+138.0 (c 0.56, benzene).
Ld: 31P NMR CDCl3): δ D141.6 (s), 143.0 (s) ppm. 1H NMR (CDCl3, 400 MHz): δ 1.17 (s, 9H), 1.32
(s, 9H), 1.43 (s, 9H), 1.55 (s, 9H), 6.77 (d, J 8.4 Hz, 1H), 7.12 (d, J 8.4 Hz, 1H), 7.19–7.23 (m, 8H),
7.31–7.40 (m, 8H), 7.53 (d, J 2.4 Hz, 1H), 7.60–7.63 (m, 2H), 7.67 (d, J 8.4 Hz, 1H), 7.75 (d, J 8.4 Hz,
1H), 7.81–7.86 (m, 5H). 13C NMR (CDCl3): δ 30.52, 31.02, 31.30, 31.69, 34.52, 34.68, 35.46, 35.72,
122.06, 122.30, 122.52, 122.76, 122.88, 124.51, 124.58, 124.88, 124.95, 125.71, 125.90, 125.99, 127.09,
128.15, 128.24, 128.33, 129.17, 129.33, 129.42, 129.76, 130.12, 130.74, 130.93, 131.34, 131.42, 132.39,
132.45, 132.66, 132.71, 140.49, 140.78, 145.04, 145.40, 146.84, 147.12, 147.77, 148.38, 148.71 ppm.
20
D
HRMS for C68H64O6P2, calcd: 1038.4178. Found: 1038.4150. Mp: 250–252°C. [α] =+170.9 (c 1.0,
benzene).
3.2. Typical procedure for the asymmetric hydrocyanation of olefins
Ni(COD)2 (2 mg, 7.3×10−3 mmol), Ld (53 mg, 51.1×10−3 mmol) and toluene (2 ml) were added
to a Schlenk vessel and the mixture was stirred for 5 minutes. After olefin (0.73 mmol) and acetone
cyanohydrin (0.073 ml, 0.80 mmol) were added, the reaction mixture was placed in an oil bath at
100°C and stirred for 24 h. n-Dodecane (61 mg, 0.36 mmol) as internal standard was added and the
reaction solution was filtered through a thin layer of silica gel and the filtrate was analyzed by GC for
the determination of conversion, selectivity and enantiomeric excess according to the methods reported
in the text.
Acknowledgements
We thank the Hong Kong Polytechnic University and the Hong Kong Research Grant Council (Project
number PolyuU34/96P) for financial support of this study.
References
1. Noyori, R. Asymmetric Catalysis in Organic Synthesis; VCH: New York, 1993; Chapter 4, p. 169.
2. Tolman, C. A.; Mckinney, R. J.; Seidel, W. C.; Druliner, J. D.; Stevens, W. R. Adv. Catal. 1985, 33, 1.
3. Baker, M. J.; Pringle, P. G. J. Chem. Soc., Chem. Commun. 1991, 1292.
4. Horiuchi, T.; Shirakawa, E.; Nozaki, K.; Takaya, H. Tetrahedron: Asymmetry 1997, 8, 57.
5. Casalnuovo, A. L.; RajanBabu, T. V.; Ayers, T. A.; Warren, T. H. J. Am. Chem. Soc. 1994, 116, 9869.
6. RajanBabu, T. V.; Casalnuovo, A. L. J. Am. Chem. Soc. 1996, 118, 6325.
7. Yan, M.; Yang, L. W.; Wong, K. Y.; Chan, A. S. C. Chem. Commun. 1999, 11.
8. Yan, M.; Chan, A. S. C. Tetrahedron Lett. 1999, 40, 6645.
9. Tolman, C. A. J. Chem. Educ. 1986, 63, 199.
10. Goertz, W.; Keim, W.; Vogt, D.; Englert, U.; Boele, M. D. K.; van der Veen, L. A.; Kamer, P. C. J.; van Leeuwen, P. W. N.
M. J. Chem. Soc., Dalton Trans. 1998, 2981.