JOURNAL OF COORDINATION CHeMISTRY
11
11.2%, for loss of two isopropanol molecules (theoretical of 10.8%). 1 is temperature more thermally
stable than H3L, because deprotonated (L)3− enhances the thermal stability of free H3L. Heating was
continued; the decomposition of 1 is 240–600 °C (figure 7(a)).
Single-crystal sample of 2 lost acetone with thermal drying at 100 °C. Thermal decomposition of 2
has two phases, an endothermic peak between 100–240 °C, losing 10.2%, from four methanol molecules
(theoretical value of 10.7%). The decomposition temperature of 2 is 240–600 °C (figure 7(b)).
4. Conclusion
[{Co(L)(i-PrOH)}2Co(H2O)]∙2CH3CN (1) and [{Co(L)(μ-OAc)Co(MeOH)2}2]∙2CH3COCH3 (2), with an
asymmetric Salamo-type ligand, have been synthesized and structurally characterized. In FTIR spectra
of 1 and 2, νCo–O and νCo–N are observed. 1 and 2 were obtained by different solvent and their struc-
tures are different. In 1, the ratio of the ligand H3L to Co(II) is 2 : 3, with five coordinate Co(II) with
trigonal bipyramidal geometries. In 2, the ratio of H3L to Co(II) is 2 : 4. Two central Co(II) ions are six
coordinate with distorted octahedral geometries, and two terminal Co(II) ions are five coordinate with
distorted trigonal bipyramidal geometries. 1 and 2 exhibit blue emissions with the maximum emission
wavelengths λmax = 403 and 395 nm when excited at 330 nm.
Supplementary material
Further details of the crystal structure investigation(s) may be obtained from the Cambridge Crystallographic Data Center,
Postal Address: CCDC, 12 Union Road, Cambridge CB2 1eZ, UK (Telephone: (44) 01223 762910; Facsimile: (44) 01223
336033; e-mail: deposit@ccdc.cam.ac.uk) on quoting the depository number CCDC Nos. 1424952 and 1424952 for 1 and
2, respectively.
Disclosure statement
No potential conflict of interest was reported by the authors.
Funding
This work was supported by the National Natural Science Foundation of China [grant number 21361015], which is gratefully
acknowledged.
References
[1] D.N. Kumar, B.S. garg. Spectrochim. Acta, Part A, 64, 141 (2006).
[2] H.B. Zhu, Z.Y. Dai, W. Huang, K. Cui, S.H. gou, C.J. Zhu. Polyhedron, 23, 1131 (2004).
[3] P.g. Cozzi. Chem. Soc. Rev., 33, 410 (2004).
[4] T. Katsuki. Coord. Chem. Rev., 140, 189 (1995).
[5] L. Canali, D.C. Sherrington. Chem. Soc. Rev., 28, 85 (1999).
[6] T. Katsuki. J. Mol. Catal. A: Chem., 113, 87 (1996).
[7] S.S. Sun, C.L. Stern, S.T. Nguyen, J.T. Hupp. J. Am. Chem. Soc., 126, 6314 (2004).
[8] W.K. Dong, X.Y. Zhang, Y.X. Sun, X.Y. Dong, g. Li. Synth. React. Inorg. Met-Org. Nano-Met. Chem., 45, 956 (2014).
[9] W.K. Dong, S.J. Xing, Y.X. Sun, L. Zhao, L.Q. Chai, X.H. gao. J. Coord. Chem., 65, 1212 (2012).
[10] N.S. Venkataramanan, g. Kuppuraj, S. Rajagopal. Coord. Chem. Rev., 249, 1249 (2005).
[11] R. Ziessel. Coord. Chem. Rev., 216–217, 195 (2001).
[12] K. Ogawa, T. Fujiwara. Chem. Lett., 28, 657 (1999).
[13] e. Ito, H. Oji, T. Araki, K. Oichi, H. Ishii, Y. Ouchi, T. Ohta, N. Kosugi, Y. Maruyama, T. Naito, T. Inabe, K. Seki. J. Am. Chem.
Soc., 119, 6336 (1997).
[14] e. Hadjoudis, T. Dziembowska, Z. Rozwadowski. J. Photochem. Photobiol. A: Chem., 128, 97 (1999).
[15] P. Cai, J.R. Hou, T.S. Liu, g.Z. Cheng, T.Y. Peng, Z.H. Peng. Spectrochim. Acta, Part A, 71, 584 (2008).
[16] S. Akine, T. Matsumoto, S. Sairenji, T. Nabeshima. Supramol. Chem., 23, 106 (2011).
[17] W.K. Dong, J.g. Duan, Y.H. guan, J.Y. Shi, C.Y. Zhao. Inorg. Chim. Acta, 362, 1129 (2009).
[18] P.A. Vigato, S. Tamburini. Coord. Chem. Rev., 248, 1717 (2004).