Paper
RSC Advances
density of 1 Â 104 cells in 200 mL of medium per well of 96-well
plate. The 96-well microtiter plate was incubated for 24 h prior to
addition of the experimental compounds. Cells were treated at
different concentrations (1, 10 and 25 mM) of the test compounds
for 48 hours. The assay was terminated with the addition of MTT
(5%, 10 mL) and incubated for 60 min at 37 ꢀC. The supernatant
was aspirated and plates were air dried. MTT-formazon crystals
were dissolved in 100 mL DMSO. The optical density (O.D) was
measured at 560 nm using TECAN multimode reader. The growth
percentage of each treated well of 96 well plate was calculated
27, 445; (d) A. Fassihi, D. Abedi, L. Saghaie, R. Sabet,
H. Fazeli and G. Bostaki, Eur. J. Med. Chem., 2009, 44, 2145.
7 (a) G. A. Burdock, M. Soni and I. G. Carabin, Regul. Toxicol.
Pharmacol., 2001, 33, 80; (b) J. M. Noh, S. Y. Kwak,
D. H. Kim and Y. S. Lee, Biopolymers, 2007, 88, 300.
8 J. Alverson, J. Invertebr. Pathol., 2003, 83, 60.
9 (a) Y. Higa, M. Kawawbe, K. Nabae, Y. Toda, S. Kitamoto and
T. Hara, J. Toxicol. Sci., 2007, 32, 143; (b) M. Yamato,
K. Hashigaki, Y. Yasumoto, J. Sakai, R. F. Luduena and
A. Banerjee, J. Med. Chem., 1987, 30, 1897.
based on test wells relative to control wells. The cell growth 10 X. Xiong and M. C. Pirrung, Org. Lett., 2008, 10, 1151.
¨
inhibition of compounds was analyzed by generating dose 11 M. D. Aytemir, E. Septioglu and U. Çalıs,
response curves as a plot of the percentage of surviving cells Arzneimittelforschung, 2010, 60, 22.
versus drug concentration. Anticancer activity of the cancer cells 12 (a) V. G. Yuen, P. Caravan, L. Gelmini, N. Glover,
to the test compounds was articulated in terms of IC50 value,
which denes as a concentration of compound resulting in the
reduction of absorbance to 50% with respect to controls.18
J. H. Mcneill, I. A. Setyawati, Y. Zhouand and C. J. Orvig,
J. Inorg. Biochem., 1997, 73, 109; (b) Y. Ohyamaand and
Y. Mishima, Fragrance J., 1990, 6, 53; (c) J. S. Chen,
C. I. Wei, R. S. Rolle, W. S. Otwell, M. O. Balaban and
M. R. Marshall, J. Agric. Food Chem., 1991, 39, 1396; (d)
H. Mitani, I. Koshiishi, T. Sumita and T. Imanari, Eur. J.
Pharmacol., 2001, 411, 169; (e) H. S. Rho, S. M. Ahn,
D. S. Yoo, M. K. Kim, D. H. Cho and J. Y. Cho, Bioorg. Med.
Chem. Lett., 2010, 20, 6569; (f) S. Y. Kwak, J. M. Noh,
S. H. Park, J. W. Byun, H. R. Choi, K. C. Rark and Y. S. Lee,
Bioorg. Med. Chem. Lett., 2010, 20, 738; (g) A. Shahrisa and
Z. Ghasemi, Chem. Heterocycl. Compd., 2010, 46, 37; (h)
B. V. S. Reddy, M. R. Reddy, G. Narasimhulu and
J. S. Yadav, Tetrahedron Lett., 2010, 51, 5677; (i)
J. H. Kasser, W. Kandioller, C. G. Hartinger, A. A. Nazarov,
V. B. Arion, P. J. Dyson and B. K. Keppler, J. Organomet.
Chem., 2010, 695, 875.
Acknowledgements
S. M. S. R. and M. S thanks to Council of Scientic and Indus-
trial Research, Government of India for the award of a fellow-
ship. Funding from the CSIR project, SMiLE is gratefully
acknowledged.
Notes and references
1 P. Perlmutter, Conjugate addition reactions in organic
synthesis, Pergamon: Oxford, UK, 1992.
2 For selected reviews of asymmetric Michael additions see: (a)
B.-L. Li, Y.-F. Wang, S.-P. Luo, A.-G. Zhong, Z.-B. Li, X.-H. Du
and D.-Q. Xu, Eur. J. Org. Chem., 2010, 656; (b) J.-R. Chen,
Y.-J. Cao, Y.-Q. Zhou, F. Tan, L. Fu, X.-Y. Zhu and
W.-J. Xiao, Org. Biomol. Chem., 2010, 8, 1275; (c) X.-Y. Cao,
J.-C. Zheng, Y.-X. Li, Z.-C. Shu, X.-L. Sun, B.-Q. Wang and
Y. Tang, Tetrahedron, 2010, 66, 9703; (d) C. Yu, Y. Zhang,
A. Song, Y. Ji and W. Wang, Chem. – Eur. J., 2011, 17, 770;
(e) Y. Zhang and W. Wang, Catal. Sci. Technol., 2012, 2, 42.
3 (a) O. N. Garcia and R. Alonso, Org. Biomol. Chem., 2013, 11,
512; (b) H. Ishikawa, M. Honma and Y. Hayashi, Angew.
Chem., Int. Ed., 2011, 50, 2824.
13 (a) P. A. Wender, N. D. Angelo, V. I. Elitzin, M. Ernst,
E. E. J. Ugueto, J. A. Kowalski, S. McKendry, M. Rehfeuter
and R. Sun, Org. Lett., 2007, 9, 1829; (b) P. A. Wender and
J. L. Mascarenas, Tetrahedron Lett., 1992, 33, 2115; (c)
P. A. Wender and J. L. Mascarenas, J. Org. Chem., 1991, 56,
6267; (d) P. A. Wender and F. E. McDonald, J. Am. Chem.
Soc., 1990, 112, 4956.
14 (a) A. A. Shestopalov, L. A. Rodinovskaya, A. M. Shestopalov
and V. P. Litvinov, Russ. Chem. Bull., 2004, 53, 724; (b)
M.-Z. Piao and K. Imafuku, Tetrahedron Lett., 1997, 38, 5301.
15 J. Wang, Q. Zhang, H. Zhang, Y. Feng, W. Yuana and
X. Zhang, Org. Biomol. Chem., 2012, 10, 2950.
4 (a) B. Vakulya, S. Varga, A. Csampai and T. Soos, Org. Lett.,
´
2005, 7, 1967; (b) B. Vakulya, S. Varga and T. Soos, J. Org.
16 (a) R. P. Cheng, S. H. Gellman and W. F. DeGrado, Chem.
Rev., 2001, 101, 3219; (b) D. Seebach, A. K. Beck,
S. Capone, G. Deniau, U. Groselj and E. Zass, Synthesis,
2009, 1; (c) D. Seebach and J. Gardiner, Acc. Chem. Res.,
2008, 41, 1366; (d) G. Lelais and D. Seebach, Biopolymers,
2004, 76, 206.
17 M. A. Reddy, N. Jain, D. Yada, C. Kishore, J. R. Vangala,
P. R. Surendra, A. Addlagatta, S. V. Kalivendi and
B. Sreedhar, J. Med. Chem., 2011, 54, 6751.
Chem., 2008, 73, 3475; (c) S. J. Connon, Chem. Commun.,
2008, 2499; (d) C. Curti, G. Rassu, V. Zambrano, L. Pinna,
G. Pelosi, A. Sartori, L. Battistini, F. Zanardi and
G. Casiraghi, Angew. Chem., Int. Ed., 2012, 51, 6200.
5 (a) S. Kong, W. Fan, G. Wu and Z. Miao, Angew. Chem., Int.
Ed., 2012, 51, 8864; (b) B. V. S. Reddy, S. M. Reddy and
M. Swain, RSC Adv., 2013, 3, 930.
´
´
6 (a) J. Brtko, L. Rondahl, M. Fickova, D. Hudecova, V. Eybl and
M. Uher, Cent. Eur. J. Public Health, 2004, 12, 8; (b)
¨
18 A. S. Kumar, M. A. Reddy, N. Jain, C. Kishor, T. R. Murthy,
D. Ramesh, B. Supriya, A. Addlagatta, S. V. Kalivendi and
B. Sreedhar, Eur. J. Med. Chem., 2013, 60, 305.
M. D. Aytemir, D. D. Erol, R. C. Hider and M. Ozalp, Turk.
J. Chem., 2003, 27, 757; (c) M. D. Aytemir, R. C. Hider,
D. D. Erol, M. Ozalp and M. Ekizoglu, Turk. J. Chem., 2003,
¨
This journal is © The Royal Society of Chemistry 2014
RSC Adv., 2014, 4, 9107–9111 | 9111