Angewandte Chemie International Edition
10.1002/anie.201711250
COMMUNICATION
=
93.2 kcal/mol for 40) indicated the HAT was feasible.[11] Thus
We are grateful for the financial support provided by the National
University of Singapore, the Ministry of Education (MOE) of
Singapore (R-143-000-645-112, R-143-000-665-114, and R-143-
000-696-114), GSK-EDB (R-143-000-687-592), and National
Natural Science Foundation of China (Grant No. 21502135 and
thiol 3 behaved as a polarity-reversal catalyst to enable the
efficient transformation. However, both the light on/off study and
quantum yield measurements ( = 0.02)
[15]
did not support a
chain process.[17] The ineffectiveness of several photoredox
catalysts with stronger oxidative potentials also indicated that
catalyst 1 played roles more than a simple radical initiator.[15]
Therefore, other than abstracting a hydrogen atom from silane,
the thiyl radical VI (E1/2red = -0.82 V vs SCE in MeCN) may
21702142).
Keywords: metal-free • photocatalysis • hydrosilylation •
hydrogen atom transfer • polarity-reversal catalysis
[15]
-
preferentially oxidize 1’ [E1/2 (P/P ) = -1.21 V vs SCE in MeCN] to
regenerate photocatalyst 1 to finish the catalytic cycle. However,
at the current stage, we were unable to exclude the possibility of
a chain process with quick termination triggered by HAT between
radical VI and the silane.[16]
[
[
[
1]
2]
3]
L. N. Lewis, J. Stein, Y. Gao, R. E. Colborn, G. Hutchins, Platinum Met.
Rev. 1997, 41, 66.
a) J. L. Speier, J. A. Webster, G. H. Barnes, J. Am. Chem. Soc. 1957, 79,
974; b) B. D. Karstedt, General Electric Company, US3775452A, 1973.
For selected recent reviews, see: a) X.-Y. Du, Z. Huang, ACS Catal. 2017,
7, 1227; b) J. Sun, L. Deng, ACS Catal. 2016, 6, 290; c) Y. Nakajima, S.
Shimada, RSC Adv. 2015, 5, 20603.
[
4]
For selected examples, see: a) A. M. Tondreau, C. C. H. Atienza, K. J.
Weller, S. A. Nye, K. M. Lewis, J. G. P. Delis, P. J. Chirik, Science 2012,
335, 567; b) C. Chen, M. B. Hecht, A. Kavara, W. W. Brennessel, B. Q.
Mercado, D. J. Weix, P. L. Holland, J. Am. Chem. Soc. 2015, 137, 13244;
c) D. Noda, A. Tahara, Y. Sunada, H. Nagashima, J. Am. Chem. Soc.
2016, 138, 2480; d) X. Du, Y. Zhang, D. Peng, Z. Huang, Angew. Chem.
Int. Ed. 2016, 55, 6671; Angew. Chem. 2016, 128, 6783; e) B. Cheng, P.
Lu, H. Zhang, X. Cheng, Z. Lu, J. Am. Chem. Soc. 2017, 139, 9439.
M. Oestreich, J. Hermeke, J. Mohr, Chem. Soc. Rev. 2015, 44, 2202.
a) T. J. Steiman, C. Uyeda, J. Am. Chem. Soc. 2015, 137, 6104; b) N.
Komine, M. Abe, R. Suda, M. Hirano, Organometallics 2015, 34, 432; c)
K. Taheshita, Y. Seki, K. Kawamoto, S. Murai, N. Sonoda, J. Org. Chem.
[
[
5]
6]
Scheme 5. Plausible mechanism for hydrosilylation of electron-rich alkenes.
1987, 52, 4864.
[
7]
For selected reviews, see: a) N. A. Romero, D. A. Nicewicz, Chem. Rev.
To further demonstrate the synthetic utility of this
methodology, hydrosilylations of electron-rich or electron-poor
alkenes were both amenable to scale-up to gram quantities
2016, 116, 10075; b) D. Ravelli, S. Protti, M. Fagnoni, Chem. Rev. 2016,
116, 9850; c) K. L. Skubi, T. R. Blum, T. P. Yoon, Chem. Rev. 2016, 116,
10035; d) R. Brimioulle, D. Lenhart, M. M. Maturi, T. Bach, Angew. Chem.
Int. Ed. 2015, 54, 3872; Angew. Chem. 2015, 127, 3944; e) C. K. Prier,
D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322; f) J.
Xuan, W.-J. Xiao, Angew. Chem. Int. Ed. 2012, 51, 6828; Angew. Chem.
assisted
by
continuous-flow
reactors
(Scheme
S1,
Supplementary Materials). Notably, the continuous micro-flow
system showed improved reaction efficiency compared to a batch
reactor, enabling effective reactions using a lower catalyst loading
2012, 124, 6934; g) J. M. R. Narayanam, C. R. Stephenson, Chem. Soc.
Rev. 2011, 40, 102.
(
1 mol% 1 and 5 mol% HAT catalyst).[18]
[
8]
9]
For selected recent reviews, see: a) L. Capaldo, D. Ravelli, Eur. J. Org.
Chem. 2017, 2056; b) S. Protti, M. Fagnoni, D. Ravelli, ChemCatChem
In summary, we developed the first visible-light-mediated
2015, 7, 1516; c) D. Ravelli, D. Dondi, M. Fagnoni, A. Albini, Chem. Soc.
metal-free hydrosilylation of both electron-deficient and electron-
rich alkenes through the synergistic combination of photoredox
and HAT catalysis. By merging the organo-photocatalyst 4CzIPN
and HAT catalyst quinuclidin-3-yl acetate, SiH activations
exclusively occurred over CH activations to achieve the
hydrosilylation with electron-deficient alkenes. Additionally, the
hydrosilylation of electron-rich alkenes was realized by dual
organo photoredox and polarity-reversal catalysis. Both reactions
featured merits such as atom- and redox-economy, mild
conditions, working efficiently with an extremely broad substrate
scope, and easy scaled up by continuous-flow technology. Our
study also provides convenient approaches to introduce silicon
radicals under visible-light conditions, which will likely find further
application for the synthesis of functionalized silicon-containing
molecules.
Rev. 2009, 38, 1999; d) M. Fagnoni, D. Dondi, D. Ravelli, A. Albini, Chem.
Rev. 2007, 107, 2725.
[
[
a) M. Salamone, M. Bietti, Acc. Chem. Res. 2015, 48, 2895; b) B. P.
Roberts, Chem. Soc. Rev. 1999, 28, 25.
10] H. Qrareya, D. Dondi, D. Ravelli, M. Fagnoni, ChemCatChem 2015, 7,
3350.
[11] See Supplementary Materials for calculated bond energies.
[
12] a) C. Le, Y. Liang, R. W. Evans, X. Li, D. W. C. MacMillan, Nature 2017,
47, 79; b) M. H. Shaw, V. W. Shurtleff, J. A. Terrett, J. D. Cuthbertson,
5
D. W. C. MacMillan, Science 2016, 352, 1304; c) J. L. Jeffrey, J. A. Terrett,
D. W. C. MacMillan, Science 2015, 349, 1532.
[
[
13] J. Luo, J. Zhang, ACS Catal. 2016, 6, 873.
14] a) F. Xue, H. Deng, C. Xue, D. K. B. Mohamed, K. Y. Tang, J. Wu, Chem.
Sci. 2017, 8, 3623; b) R. Zhou, H. Liu, H. Tao, X. Yu, J. Wu, Chem. Sci.
2017, 8, 4654.
[15] See Supplementary Materials for details of control experiments,
luminescence quenching studies, and CV tests.
[
[
16] M. A. Cismesia, T. P. Yoon, Chem. Sci. 2015, 6, 5426.
17] a) M. B. Haque, B. P. Roberts, Tetrahedron Lett. 1996, 37, 9123; b) H.-
S. Dang, B. P. Roberts, Tetrahedron Lett. 1995, 36, 2875.
18] D. Cambie, C. Bottecchia, N. J. W. Straathof, V. Hessel, T. Noël, Chem.
Rev. 2016, 116, 10276.
Acknowledgements
[
This article is protected by copyright. All rights reserved.