Journal of the American Chemical Society
Communication
oligocarbamate V (unlabeled counterpart of oligocarbamate II
was chosen to avoid any interference of the CF label), after
complexation with plasmid DNA (Figure S34) and transfection,
exhibited efficient expression of the reporter gene (Figure 6)
AUTHOR INFORMATION
Corresponding Author
■
Author Contributions
§K.M.P. and R.J.N. contributed equally.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
CSIR-New Delhi is acknowledged for a research grant
(NWP0036A) to V.A.K.; NCL-IGIB Joint Research Initiative
for funding; CSIR-New Delhi for Research Fellowships to
K.M.P. and Rajpal; DBT-New Delhi for Research Fellowship to
R.J.N.; and Manika Vij (IGIB) for help with some FACS
experiments.
REFERENCES
■
(1) Schwarze, P. M.; Dowdy, S. F. Trends Pharmacol. Sci. 2000, 21,
45.
Figure 6. Transfection of pMIR-Report luciferase in CHO-K1 cells
with unlabeled oligomers IV, V, and VII.
(2) Derossi, D.; Chassaing, G.; Prochiantz, A. Trends Cell Biol. 1998,
8, 84.
(3) Derossi, D.; Joliot, A. H.; Chassaing, G.; Prochiantz, A. J. Biol.
Chem. 1994, 269, 10444.
(4) Mitchell, D. J.; Kim, D. T.; Steinman, L.; Fathman, C. G.;
Rothbard, J. B. J. Pept. Res. 2000, 56, 318.
(5) Naik, R. J.; Chandra, P.; Mann, A.; Ganguli, M. J. Biol. Chem.
2011, 286, 18982.
better than that of oligoamide IV, without using chloroquine as
endosomolytic reagent,19 and comparable to that of Lipofect-
amine2000 (Figure S35). Additionally, oligomer V−DNA
complexes demonstrated much better cell viability than
Lipofectamine2000. In another experiment, oligocarbamate II
was found to be more efficient than I in mediating cellular entry
of a covalently conjugated potential therapeutic peptide20
(conjugates B and A respectively in Table S1 and Figure S32).
Further, labeled siRNA (siGLO) was found to be efficiently
internalized in CHO-K1 cells when complexed to oligocarba-
mate V, as determined by FACS analysis (Figure S33).
(6) Rothbard, J. B.; Kreider, E.; VanDeusen, C. L.; Wright, L.; Wylie,
B. L.; Wender, P. A. J. Med. Chem. 2002, 45, 3612.
(7) Abes, R.; Moulton, H. M.; Clair, P.; Yang, S.-T.; Abes, S.;
Melikov, K.; Prevot, P.; Youngblood, D. S.; Iversen, P. L.;
Chernomordik, L. V.; Lebleu, B. Nucleic Acids Res. 2008, 36, 6343.
(8) Jearawiriyapaisarn, N.; Moulton, H. M.; Buckley, B.; Roberts, J.;
Sazani, P.; Fucharoen, S.; Iversen, P. L.; Kole, R. Mol. Ther. 2008, 16,
1624.
̈
(9) (a) Madani, F.; Lindberg, S.; Langel, U.; Futaki, S.; Graslund, A. J.
In conclusion, newly synthesized oligocarbamates containing
the (r-x-r) motif with spaced guanidine groups were shown to
be effective in cellular entry, even under conditions that inhibit
endocytotic pathways. It appears that, in addition to other
energy-dependent pathways, at least one pathway such as direct
translocation could be at work as the major mode of transport
in this case. The oligocarbamate is able to deliver a large cargo
such as plasmid DNA with high reporter gene expression,
without the addition of chloroquine as required for similar
experiments with (R-Ahx-R)4_amide.19 Further, the oligocar-
bamates also allow efficient cellular entry of covalently
conjugated peptides and siRNA in the complexed form. The
strong cellular entry of the designed oligocarbamates should be
extremely attractive for their further development as cellular
transporters for small molecules, oligopeptides, and oligonu-
cleotides for therapeutic applications.
Biophys. 2011, 1. (b) Richard, J. P.; Melikov, K.; Vives, E.; Verbeure, C.
R. B.; Gait, M. J.; Chernomordik, L. V.; Lebleu, B. J. Biol. Chem. 2003,
278, 585.
(10) Youngblood, D. S.; Hatlevig, S. A.; Hassinger, J. N.; Iversen, P.
L.; Moulton, H. M. Bioconjugate Chem. 2007, 18, 50.
(11) Wu, R. P.; Youngblood, D. S.; Hassinger, J. N.; Lovejoy, C. E.;
Nelson, M. H.; Iversen, P. L.; Moulton, H. M. Nucleic Acids Res. 2007,
35, 5182.
(12) Schroder, T.; Niemeier, N.; Afonin, S.; Ulrich, A. S.; Krug, H. F.;
̈
Brase, S. J. Med. Chem. 2008, 51, 376.
̈
(13) Tamilarasu, N.; Huq, I.; Rana, T. M. Bioorg. Med. Chem. Lett.
2001, 11, 505.
(14) Cooley, C. B.; Trantow, B. M.; Nederberg, F.; Kiesewetter, M.
K.; Hedrick, J. L.; Waymouth, R. M.; Wender, P. A. J. Am. Chem. Soc.
2009, 131, 16401.
(15) Wender, P. A.; Rothbard, J. B.; Jessop, T. C.; Kreider, E. L.;
Wylie, B. L. J. Am. Chem. Soc. 2002, 124, 13382.
(16) Lee, K. H.; Oh, J. E. Bioorg. Med. Chem. 2000, 8, 833.
(17) Hawker, D. W.; Connell, D. W. Environ. Sci. Technol. 1989, 23,
961.
ASSOCIATED CONTENT
* Supporting Information
■
S
(18) Chambers, J. D.; Simon, S. I.; Berger, E. M.; Sklar, L. A.; Arfors,
K. E. J. Leukoc. Biol. 1993, 53, 462.
NMR and mass spectra of 2a and 3a−c; HPLC chromatograms
and MALDI-TOF spectra of oligomers; further confocal
microscopy images, FACS analysis, cell viability assay, and
cargo delivery data in CHO-K1 cells; FACS analysis, confocal
microscopy images, and cell viability assay in HeLa cells; DNA
complexation studies by gel mobility shift assay of pDNA with
oligomers IV and V and cell viability assay of the complexes in
CHO-K1 cells. This material is available free of charge via the
̌
(19) Lehto, T.; Abes, R.; Oskolkov, N.; Suhorutsenko, J.; Copolovici,
D.-M.; Mager, I.; Viola, J. R.; Simonson, O. E.; Ezzat, K.; Guterstam,
̈
̈
P.; Eriste, E.; Smith, C. I. E.; Lebleu, B.; El Andaloussi, S.; Langel, U. J.
Controlled Release 2010, 141, 42.
(20) Lu, R.; Jia, J.; Bao, L.; Fu, Z.; Li, G.; Wang, S.; Wang, Z.; Jin, M.;
Gao, W.; Yao, Z. Cancer Chemother. Pharmacol. 2006, 57, 248.
7199
dx.doi.org/10.1021/ja210026m | J. Am. Chem. Soc. 2012, 134, 7196−7199