CHART 1
Contrastive Photoreduction Pathways of
Benzophenones Governed by Regiospecific
Deprotonation of Imidazoline Radical
Cations and Additive Effects
Eietsu Hasegawa,*,† Takayuki Seida,† Naoki Chiba,†
Tomoya Takahashi,† and Hiroshi Ikeda‡
Department of Chemistry, Faculty of Science, Niigata
University, Ikarashi-2 8050, Niigata 950-2181, Japan, and
Department of Chemistry, Graduate School of Science,
Tohoku University, Sendai 980-8578, Japan
Received July 10, 2005
1,3-dimethylbenzimidazolines (HPDMBI), shown in Chart
1, act as effective reagents to promote the photoinduced
reduction of ketones. The synthetic utilities of these
benzimidazolines are thus far recognized; however, their
reaction behaviors in PET systems has been less ex-
plored. Therefore, we investigated photoreactions of
benzophenone (1a), a simple but useful mechanistic probe
substrate in various PET reactions,7 and m-methylben-
zophenone (1b) with DMPBI and 2-(o-hydroxyphenyl)-
1,3-dimethylbenzimidazoline (o-HPDMBI). Here, we re-
port contrastive photoreduction pathways of 1 governed
by regiospecific deprotonation of the radical cations of
DMPBI and o-HPDMBI and by properties of the proton
donors and metal salts.
In the photoreaction of benzophenones with 1,3-dimethyl-
2-phenylbenzimidazoline (DMPBI), benzhydrols were major
products. Addition of H2O accelerated the reaction with no
change in the product distribution, while AcOH, PhOH, and
metal salts such as LiClO4 and Mg(ClO4)2 were effective
additives to produce benzpinacols. In contrast, benzpinacols
were exclusively formed regardless of the solvent and the
additive in the reactions with 2-(o-hydroxyphenyl)-1,3-
dimethylbenzimidazoline (o-HPDMBI). These observations
are consistent with the hypothesis that DMPBI•+ donates a
proton at the C2 position to the benzophenone ketyl radicals
while o-HPDMBI•+ donates a phenol proton.
(2) (a) Yoon, U. C.; Marinao, P. S.; Givens, R. S.; Atwater, B. W.,
III. In Advances in Electron Transfer Chemistry; Mariano, P. S., Ed.;
JAI Press: Greenwich, CT, 1994; Vol. 4, p 117. (b) Lewis, F. D. In
Advances in Electron Transfer Chemistry; Mariano, P. S., Ed.; JAI
Press: Greenwich, CT, 1996; Vol. 5, p 1. (c) Das, S.; Suresh, V. In
Electron Transfer in Chemistry; Balzani, V., Ed.; Wiley-VCH: Wein-
heim, Germany, 2001; Vol. 2, p 379.
(3) (a) Berger, D. J.; Tanko, J. M. In The Chemistry of Double-
Bonded Functional Groups; Patai, S., Ed.; Wiley: New York, 1997; p
1281. (b) Griesbeck, A. G.; Shieffer, S. In Electron Transfer in
Chemistry; Balzani, V., Ed.; Wiley-VCH: Weinheim, Germany, 2001;
Vol. 2, p 457. (c) Hasegawa, E. J. Photosci. 2003, 10, 61.
(4) (a) Hasegawa, E.; Kato, T.; Kitazume, T.; Yanagi, K.; Hasegawa,
K.; Horaguchi, T. Tetrahedron Lett. 1996, 37, 7079. (b) Hasegawa, E.;
Tamura, Y.; Tosaka, E. J. Chem. Soc., Chem. Commun. 1997, 1895.
(c) Hasegawa, E.; Yoneoka, A.; Suzuki, K.; Kato, T.; Kitazume, T.;
Yanagi, K. Tetrahedron 1999, 55, 12957. (d) Hasegawa, E.; Chiba, N.;
Nakajima, A.; Suzuki, K.; Yoneoka, A.; Iwaya, K. Synthesis 2001, 1248.
(e) Hasegawa, E.; Takizawa, S.; Iwaya, K.; Kurokawa, M.; Chiba N.;
Yamamichi, K. J. Chem. Soc., Chem. Commun. 2002, 1966.
Photoinduced electron-transfer (PET) processes provide
useful methods to generate organic radical ions in solu-
tion, and the reaction pathways of radical ions are
principally governed by not only their inherent property
but also the surrounding medium including solvents and
additives.1 Because pairs of radical ions are uniquely
generated with the PET methods in contrast to other
nonphotochemical methods, specific interactions between
the radical ion pairs are essentially important in the PET
reaction systems.1 Among the compounds that have been
frequently subjected to PET reactions are amines2 and
ketones.3 Previously, we reported4,5 that 1,3-dimethyl-2-
phenylbenzimidazoline (DMPBI)6 and 2-hydroxyphenyl-
(5) Hasegawa, E.; Chiba, N.; Takahashi, T.; Takizawa, S.; Kitayama,
T.; Suzuki, T. Chem. Lett. 2004, 33, 18.
(6) (a) Chikashita, H.; Itoh, K. Bull. Chem. Soc. Jpn. 1986, 59, 1747.
(b) Chikashita, H.; Ide, H.; Itoh, K. J. Org. Chem. 1986, 51, 5400. (c)
Chen, J.; Tanner, D. D. J. Org. Chem. 1988, 53, 3897. (d) Tanner, D.
D.; Chen, J. J. J. Org. Chem. 1989, 54, 3842. (e) Tanner, D. D.; Chen,
J. J.; Chen, L.; Luelo, C. J. Am. Chem. Soc. 1991, 113, 8074.
(7) (a) Cohen, S. G.; Palora, A.; Parsons, G. H., Jr. Chem. Rev. 1973,
73, 141 and references therein. (b) Hoshino, M.; Shizuka, H. In
Photoinduced Electron Transfer; Fox, M. A., Chanon, M., Eds.;
Elsevier: Amsterdam, 1988; Part C, p 313. (c) Davidson, R. S. J. Chem.
Soc., Chem. Commun. 1966, 575. (d) Pac, C.; Sakurai, H.; Tosa, T. J.
Chem. Soc., Chem. Commun. 1970, 1311. (e) Arimitsu, S.; Masuhara,
H.; Mataga, N.; Tsubomura, H. J. Phys. Chem. 1975, 79, 1255. (f) Inbar,
S.; Linshitz, H.; Cohen, S. G. J. Am. Chem. Soc. 1981, 103, 1048. (g)
Simon, J. D.; Peters, K. S. J. Am. Chem. Soc. 1981, 103, 6403. (h)
Simon, J. D.; Peters, K. S. J. Am. Chem. Soc. 1982, 104, 6542. (i) Simon,
J. D.; Peters, K. S. J. Am. Chem. Soc. 1983, 105, 4875. (j) Devadoss,
C.; Fessenden, R. W. J. Phys. Chem. 1991, 95, 7253. (k) Jones, P. B.;
Pollastri, M. P.; Porter, N. A. J. Org. Chem. 1996, 61, 9455. (l)
Reynolds, J. L.; Erdner, K. R.; Jones, P. B. Org. Lett. 2002, 4, 917.
† Niigata University.
‡ Tohoku University.
(1) (a) Eberson, L. Electron Transfer Reactions in Organic Chemistry;
Springer-Verlag: Berlin, 1987. (b) Photoinduced Electron Transfer; Fox,
M. A., Chanon, M., Eds.; Elsevier: Amsterdam, 1988; Parts A-D. (c)
Kavarnos, G. J. Fundamental of Photoinduced Electron Transfer; VCH
Press: New York, 1993. (d) Advances in Electron Transfer Chemistry;
Mariano, P. S., Ed.; JAI Press: Greenwich, CT, 1991-1999; Vols. 1-6.
(e) Electron Transfer in Chemistry; Balzani, V., Ed.; Wiley-VCH:
Weinheim, Germany, 2001; Vols. 1-5.
10.1021/jo0514220 CCC: $30.25 © 2005 American Chemical Society
Published on Web 10/18/2005
9632
J. Org. Chem. 2005, 70, 9632-9635