Struct Chem (2010) 21:323–330
Magnetic measurements
329
metal–metal interactions may occur which can be observed
as decrease in magnetic moment [38].
In order to estimate magnetic properties, the oxidation
number of metal ions, and the structure of the iron–rutin
complexes, the magnetic measurements were carried out.
Dependences vM = f(T) and leff = f(T) for all examinated
compounds are analogous, shown in Fig. 5.
Complexes (1) and (2) obey Curie law, and the
appropriate Curie constants (C) amount to 2.2 and
2.8 cm3 K mol-1
.
Compounds (3) and (4) obey the Curie–Weiss law;
C and Weiss constants (h) are equal: for (3) C =
4.8 cm3 K mol-1
;
h = -8.7 K; and for (4) C =
On the basis of vM = f(T), one may say that for
complexes (1)–(4) as T increased, vM smoothly lowered
and then tended to a plateau at ca. 100 K. Then the vM
values are 2.42 9 10-2, 3.05 9 10-2, 4.26 9 10-2, and
7.75 9 10-2 cm3 K mol-1, respectively. Calculated val-
ues of magnetic moments pointed that the obtained com-
plexes are paramagnetic. The values of effective magnetic
moments [M.B.] at 300 and 1.9 K are (1) 4.82, 3.14, (2)
5.45, 3.43, (3) 6.18, 3.21, and (4) 8.60, 3.18.
9.2 cm3 K mol-1; h = -14.3 K. This is probably the
consequence of antiferromagnetic spin interaction [for
compounds (3) and (4), the Weiss constants have a nega-
tive sign] or CF splitting of the paramagnetic spin state—
complexes (1) and (2) [37, 39, 40].
References
For compounds (1) and (2), magnetic moments at room
temperature are very close to values for the free iron ion on
?2 (4.90 M.B.) and ?3 (5.92 M.B.) oxidation number;
however, as temperature decreases, leff decreases, reflect-
ing the gradual depopulation of the crystal field (CF) split
energy levels of metal ions [36].
1. Zejc A, Gorczyca M (2004) Drug chemistry (in Polish). Wyd.
Lekarskie, PZWL, Warszawa, pp 590
2. Zhang Y, Li H, Zhao Y, Gao Z (2006) Eur J Pharm 535:263
3. Cotelle N, Bernier J-L, Catteau J-P, Pommery J, Wallet J-C,
Gaydou EM (1996) Free Radical Biol Med 20:35
4. Rice-Evans CA, Miller NJ, Paganga G (1996) Free Radical Biol
Med 20:933
On the basis of leff, values for complexes (1) and (3) the
spatial structure for them may be predicted. Compounds (1)
and (3) are high-spin complexes with structure similar to
tetrahedron and regular octahedron [30, 37].
5. Rice-Evans CA, Miller NJ, Paganga G (1997) Trends Plant Sci
2:152
6. Kostyuk VA, Potapovich AI, Struginova EN, Kostyuk TV,
Afanas’ev IB (2004) Arch Biochem Biophys 428:204
7. van Acker SABE, van den Berg D-J, Tromp MNJL, Griffioen
DH, van Bennekom WP, van den Vijgh WJF, Bast A (1996) Free
Radical Biol Med 20:331
8. van Acker SABE, van Balen GP, van den Berg D-J, Bast A, van
den Vijgh WJF (1998) Biochem Pharmacol 56:935
9. Moridani MY, Pourahmad J, Bui H, Siraki A, O’Brien PJ (2003)
Free Radical Biol Med 34:243
Complexes (2) and (4) are polynuclear with intermediate
interactions which has an influence to leff value.
Compound (2) includes two iron atoms on ?2 oxidation
state which are coordinated in different places in the rutin
molecule (positions II and III) and, what follows, the
metal–metal interactions did not occur. In this case, the
susceptibility of complex is a sum of susceptibilities of
individual central ions and a ligand [38].
10. Kostyuk VA, Potapovich AI (1998) Arch Biochem Biophys
355:43
11. Deng W, Fang X, Wu J (1997) Radiat Phys Chem 50:271
12. Afanas’ev IB, Ostrakhovitch EA, Mikhal’chik EV, Ibragimova
GA, Korkina LG (2001) Biochem Pharmacol 61:677
13. Afanas’ev IB, Ostrakhovitch EA, Abramova NE, Korkina LG
(1995) Biochem Pharmacol 50:627
In hexanuclear complex (4), iron atoms at ?2 and ?3
oxidation state are connected by oxide bridges so the
14. Marczenko Z, Balcerzak M (1998) Spectrophotometric methods
in inorganic analysis. PWN, Warsaw, p 506 (in Polish)
7
6
5
4
3
2
1
0
0,7
0,6
0,5
0,4
0,3
0,2
0,1
0,0
¨
15. Konig E (1966) Magnetic properties of coordination and orga-
nometallic transition metal compounds. Springer-Verlag, Berlin,
p 27
16. Saidman E, Yurquina A, Rudyk R, Molina MAA, Ferretti FH
(2002) J Mol Struct (Theochem) 585:1
µef
χM
´
17. Kuzniar A (2004) PhD thesis, Rzeszow University of Technology
18. Kopach M, Kopach S, Skuba E (2004) Zh Obshch Khim 74:1035
19. Kopach M, Novak D (1991) Zh Obshch Khim 61:1361
´
20. Inczedy J (1979) Complexation equilibrium in analytical chem-
istry. PWN, Warszawa, p 46 (in Polish)
21. Mielczarek C (2005) Eur J Pharm Sci 25:273
22. Williams AF (1986) A theorethical approach to inorganic
chemistry. PWN, Warszawa, p 194 (in Polish)
0
50
100
150
200
250
300
T, K
23. Geissman TA (1962) The chemistry of flavonoid compounds.
Pergamon Press, Oxford, p 108
24. Mabry TJ, Markham KR, Thomas MB (1970) The systematic
identification of flavonoids. Springer-Verlag, Berlin, p 42
Fig. 5 Experimental magnetic data plotted as magnetic susceptibility
vM, cm3 mol-1(j (1); h (3)); and magnetic moment leff, B.M.
(d (1), ꢃ (3)) versus temperature
123