LETTER
Direct Conversion of Allyl/Benzyl Alcohols into 1,2,3-Triazoles
2207
(7) Srinu, G.; Srihari, P. Tetrahedron Lett. 2013, 54, 2382.
(8) Reddy, P. S.; Ravi, V.; Sreedhar, B. Tetrahedron Lett. 2010,
51, 4037; and references cited therein.
(9) Hajipour, A. R.; Rajaei, A.; Ruoho, A. E. Tetrahedron Lett.
2009, 50, 708.
(10) Yadav, J. S.; Bhunia, D. C.; Krishna, K. V.; Srihari, P.
Tetrahedron Lett. 2007, 48, 8306.
(11) Kumar, H. M. S.; Reddy, B. V. S.; Anjaneyulu, S.; Yadav, J.
S. Tetrahedron Lett. 1998, 39, 7385.
(12) (a) Muzart, J. Tetrahedron 2005, 61, 4179. (b) Kitamura,
M.; Koga, T.; Yano, M.; Okauchi, T. Synlett 2012, 23, 1335.
(c) Jayanthi, A.; Gumaste, V. K.; Deshmukh, A. R. A. S.
Synlett 2004, 979. (d) Rueping, M.; Vila, C.; Uria, U. Org.
Lett. 2012, 14, 768.
(16) General Procedure for the Magnetic Nano Fe3O4
Catalyzed Direct Azidation of Allylic Alcohol 1a
A mixture of alcohol 1a (0.5 mmol), trimethylsilyl azide
(1.25 mmol), and magnetic nano Fe3O4 (particle size <50
nm, 15 mol%; the particles can be handled using a Teflon
spatula) in DCE (3 mL) was stirred at 70 °C for 6 h. At this
stage a magnet was externally applied to the reaction flask to
attract the magnetic Fe3O4 nanoparticles, and the resulting
clear solution was transferred to another flask using a
pipette. The catalyst was washed using EtOAc (2 mL), and
the residual Fe3O4 nanoparticles were heated in an oven at
100–110 °C overnight, and the catalyst was reused in
subsequent cycles. The combined organic layers were
evaporated under vacuum and purified by column
(13) (a) Bräse, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew.
Chem. Int. Ed. 2005, 44, 5188. (b) Skoda, E. M.; Davis, G.
C.; Wipf, P. Org. Process Res. Dev. 2012, 16, 26.
(c) Scriven, E. F. V.; Turnbull, K. Chem. Rev. 1988, 88, 297.
(d) Azides and Nitrenes; Scriven, E. F. V., Ed.; Academic:
New York, 1984.
(14) (a) Babu, S. G.; Karvembu, R. Catal. Surv. Asia 2013, 17,
156. (b) Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H.;
Bouhrara, M.; Basset, J.-M. Chem. Rev. 2011, 111, 3036.
(c) Shylesh, S.; Schünemann, V.; Thiel, W. R. Angew.
Chem. Int. Ed. 2010, 49, 3428. (d) Parella, R.; Naveen;
Kumar, A.; Babu, S. A. Tetrahedron Lett. 2013, 54, 1738.
(e) Parella, R.; Naveen; Babu, S. A. Catal. Commun. 2012,
29, 118. (f) Kumar, A.; Parella, R.; Babu, S. A. Synlett 2014,
25, 835. (g) Gawande, M. B.; Branco, P. S.; Varma, R. S.
Chem. Soc. Rev. 2013, 42, 3371.
chromatography to give the product 2.
General Procedure for the One-Pot Magnetic Nano
Fe3O4 Catalyzed Direct Azidation of Allylic Alcohols and
Click Reaction
The direct azidation of 1a (0.5 mmol) was carried out as
above, the catalyst was removed using an external magnet,
and the solvent was evaporated. Then to the residue THF (3
mL), H2O (3 mL), alkyne (1 mmol), CuSO4·5H2O (30
mol%), and sodium L-ascorbate (30 mol%) were added, and
the mixture was stirred at r.t. for 12 h. The reaction mixture
was then extracted using EtOAc, the combined organic
layers were evaporated, and the resulting reaction mixture
was purified by column chromatography, eluting with
EtOAc–hexanes (50:50), to afford the product 4a as a
colorless liquid. Yield: 82% (238 mg). FT-IR (neat): ν =
3375, 2954, 1731, 1450, 1223, 1091 cm–1. 1H NMR (400
MHz, CDCl3): δ = 7.57 (s, 1 H), 7.41–7.28 (m, 10 H), 6.70
(dd, J1 = 15.6 Hz, J2 = 7.2 Hz, 1 H), 6.52–6.47 (m, 2 H), 4.79
(s, 2 H), 3.36 (br s, 1 H). 13C NMR (100 MHz, CDCl3): δ =
147.8, 137.7, 135.5, 134.7, 129.2, 128.8, 128.7, 128.6,
127.5, 126.9, 125.5, 121.2, 66.5, 56.4. ESI-HRMS: m/z calcd
for C18H18N3O [M + H]+: 292.1450; found: 292.1100.
(17) The nano Fe3O4 used in this work was purchased from
Sigma-Aldrich, and the size of the particles was checked
through HRTEM analysis/images (see the Supporting
Information) before using the nano Fe3O4. For
(15) (a) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless,
K. B. Angew. Chem. Int. Ed. 2002, 41, 2596. For selected
reviews, see: (b) Bock, V. D.; Hiemstra, H.; van
Maarseveen, J. H. Eur. J. Org. Chem. 2006, 51. (c) Agalave,
S. G.; Maujan, S. R.; Pore, V. S. Chem. Asian J. 2011, 6,
2696. (d) Hein, J. E.; Fokin, V. V. Chem. Soc. Rev. 2010, 39,
1302. (e) van Dijk, M.; Rijkers, D. T. S.; Liskamp, R. M. J.;
van Nostrum, C. F.; Hennink, W. E. Bioconjugate Chem.
2009, 20, 2001. (f) Hein, C. D.; Liu, X.-M.; Wang, D.
Pharm. Res. 2008, 25, 2216. (g) Lutz, J.-F. Angew. Chem.
Int. Ed. 2008, 47, 2182. (h) Tron, G. C.; Pirali, T.;
Billington, R. A.; Canonico, P. L.; Sorba, G.; Genazzani, A.
A. Med. Res. Rev. 2008, 28, 278. (i) Dondoni, A. Chem.
Asian J. 2007, 2, 700. (j) Ganesh, V.; Sudhir, S.; Kundu, T.;
Chandrasekaran, S. Chem. Asian J. 2011, 6, 2670.
(k) Moses, J. E.; Moorhouse, A. D. Chem. Soc. Rev. 2007,
36, 1249. (l) Thirumurugan, P.; Matosiuk, D.; Jozwiak, K.
Chem. Rev. 2013, 113, 4905.
communications dealing with the preparation and
characterization of nano Fe3O4, see: (a) Sun, J.; Zhou, S.;
Hou, P.; Yang, Y.; Weng, J.; Li, X.; Li, M. J. Biomed. Mater.
Res., Part A 2007, 80, 333. (b) Yuanbi, Z.; Zumin, Q.;
Jiaying, H. Chin. J. Chem. Eng. 2008, 16, 451. (c) Wu, S.;
Sun, A.; Zhai, F.; Wang, J.; Xu, W.; Zhang, Q.; Volinsky, A.
A. Mater. Lett. 2011, 65, 1882. (d) Yang, T.; Shen, C.; Li,
Z.; Zhang, H.; Xiao, C.; Chen, S.; Xu, Z.; Shi, D.; Li, J.; Gao,
H. J. Phys. Chem. B 2005, 109, 23233.
© Georg Thieme Verlag Stuttgart · New York
Synlett 2014, 25, 2201–2207