Peroxyacetyl Nitrate Formation
J. Phys. Chem. A, Vol. 101, No. 1, 1997 59
to derive the lines plotted in Figure 6. Villalta and Howard9
have reported k2 ) 8.1 × 10-12 exp(270/T) cm3 molecule-1
s-1 over the temperature range 200-402 K, from a direct study
of the acetylperoxy radicals using mass spectrometry. Maricq
and Szente,10 on the other hand, have reported k2 ) 2.1 × 10-12
exp(570/T) cm3 molecule-1 s-1 over the temperature range 228-
353 K, from transient IR absorption of NO2 and time-resolved
UV spectroscopy of the acetylperoxy radicals. It is clear from
the two resulting lines shown in Figure 6 that there is a
significant difference, about 30% at 298 K, in the calculated
values of k1/k2 at atmospheric pressure based on the studies of
Villata and Howard9 and of Maricq and Szente.10 Until this
discrepancy is resolved, it is difficult to compare the calculated
values of k1/k2 with those measured in the relative rate studies,
although at face value the calculated ratios k1/k2 derived from
the study of Villata and Howard9 are in better agreement with
the present data than are those of Maricq and Szente.10
Atmospheric Implications. While at altitudes above 7 km
photolysis is the major loss process of PAN,30,27 the lifetime
(τ) of PAN in the warmer parts of the troposphere is controlled
by the rate of its thermal dissociation, reaction -1. In addition,
however τ is dependent upon reactions 1 and 2 and may be
expressed according to eq VI, based on a steady-state assumption
for the acetylperoxy radical concentration:12
(6) Bridier, I.; Caralp, F.; Loirat, H.; Lesclaux, R.; Veyret, B. J. Phys.
Chem. 1991, 95, 3594-3600.
(7) Addison, M. C.; Burrows, J. P.; Cox, R. A.; Patrick, R. Chem. Phys.
Lett. 1980, 73, 283-287.
(8) Basco, N.; Parmar, S. S. Int. J. Chem. Kinet. 1987, 19, 115-128.
(9) Villalta, P. W.; Howard, C. J. J. Phys. Chem. 1996, 100, 13624-
13628.
(10) Maricq, M. M.; Szente, J. J. J. Phys. Chem. 1996, 100, 12380-
12385.
(11) Cox, R. A.; Derwent, R. G.; Holt, P. M.; Kerr, J. A. Faraday Trans.
1 1976, 72, 2061-2075.
(12) Cox, R. A.; Roffey, M. J. EnViron. Sci. Technol. 1977, 11, 900-
906.
(13) Hendry, D. G.; Kenley, R. A. J. Am. Chem. Soc. 1977, 99, 3198-
3199.
(14) Kirchner, F.; Zabel, F.; Becker, K. H. Ber. Bunsen-Ges. Phys. Chem.
1990, 94, 1379-1382.
(15) Tuazon, E. C.; Carter, W. P. L.; Atkinson, R. J. Phys. Chem. 1991,
95, 2434-2437.
(16) Zabel, F.; Kirchner, F.; Becker, K. H. Int. J. Chem. Kinet. 1994,
26, 827-845.
(17) Kerr, J. A.; Stocker, D. W. J. Photochem. 1985, 28, 475-489.
(18) Kirchner, F.; Zabel, F.; Becker, K. H. Chem. Phys. Lett. 1992, 191,
169-174.
(19) Kenley, R. A.; Hendry, D. G. J. Am. Chem. Soc. 1982, 104, 220-
224.
(20) Nielsen, T.; Hansen, A. M.; Thomsen, E. L. Atmos. EnViron. 1982,
16, 2447-2450.
(21) Gaffney, J. S.; Fajer, R.; Senum, G. I. Atmos. EnViron. 1984, 18,
215-218.
(22) Harris, S. J.; Kerr, J. A. Int. J. Chem. Kinet. 1988, 20, 939-955.
(23) Semadeni, M.; Stocker, D. W.; Kerr, J. A. J. Atm. Chem. 1993,
16, 79-93.
(24) Grob, K.; Grob, G. J. High Resolution Chromat. Chromat. Commun.
1983, 6, 133-139.
(25) Seefeld, S. Laboratory Kinetic and Atmospheric Modelling Studies
of the Role of Peroxyacyl Nitrates in Tropospheric Photo-Oxidant Forma-
tion. Ph.D. Thesis, Swiss Federal Institute of Technology Zurich (ETH),
1997.
(26) Langer, S.; Wa¨ngberg, I.; Ljungstro¨m, E. Atmos. EnViron. 1992,
26A, 3089-3098.
(27) Talukdar, R. K.; Burkholder, J. B.; Schmoltner, A.-M.; Roberts, J.
M.; Wilson, R. R.; Ravishankara, A. R. J. Geophys. Res. 1995, 100, 14163-
14173.
(28) Wallington, T. J.; Dagaut, P.; Kurylo, M. J. Chem. ReV. 1992, 92,
667-710.
(29) DeMore, W. B.; Sander, S. P.; Golden, D. M.; Hampson, R. F.;
Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.; Kolb, C. E.; Molina,
M. J.; NASA Panel for Data Evaluation; Chemical Kinetics and Photo-
chemical Data for Use in Stratospheric Modeling, EValuation Number 11,
JPL Publication 94-26, 1994.
k1 [NO2]
τ ) 1 +
(k-1)-1
(VI)
(
)
k2
[NO]
For example, at a temperature of 263 K in the free
troposphere, taking a typical31 [NO]/[NO2] ratio of 3, the lifetime
is 20 days, based on the value of k1/k2 determined here and the
value of k-1 recommended by IUPAC.5 This lifetime is 2.2
times lower when calculated simply on the basis of reaction
-1. Thus the ratio of rate coefficients, k1/k2, plays a significant
role in the lifetime of PAN in the troposphere and consequently
affects the transport of PAN and therefore the ozone generation.
References and Notes
(1) Stephens, E. R. AdV. EnViron. Sci. Technol. 1969, 1, 119-147.
(2) Roberts, J. M. Atmos. EnViron. 1990, 24A, 243-287.
(3) Taylor, O. C. J. Air. Pollu. Contr. Assoc. 1969, 19, 347-351.
(4) Yang, Y.-J.; Stockwell, W. R.; Milford, J. B. EnViron. Sci. Technol.
1995, 29, 1336-1345.
(30) Kleindienst, T. E. Res. Chem. Intermed. 1994, 20, 335-384.
(31) Carroll, M. A.; Hastie, D. R.; Ridley, B. A.; Rodgers, M. O.; Torres,
A. L.; Davis, D. D.; Bradshaw, J. D.; Sandholm, S. T.; Schiff, H. I.; Karecki,
D. R.; Harris, G. W.; Mackay, G. I.; Gregory, G. L.; Condon, E. P.; Trainer,
M.; Hubler, G.; Montzka, D. D.; Madronich, S.; Albritton, D. L.; Singh,
H. B.; Beck, S. M.; Shipham, M. C.; Bachmeier, A. S. J. Geophys. Res.
1990, 95, 10205-10233.
(5) Atkinson, R.; Baulch, D. L.; Cox, R. A.; Hampson, R. F.; Kerr, J.
A.; Troe, J. J. Phys. Chem. Ref. Data 1992, 21, 1125.