10.1002/cssc.201700898
ChemSusChem
COMMUNICATION
[2]
[3]
a) P. Styring, A. Quadrelli, K. Armstrong in Carbon Dioxide Utilisation:
Closing the Carbon Cycle, Elsevier, 2015; b) M. North, P. Styring,
Faraday Discuss. 2015, 183, 489. c) J. A. Martens, A. Bogaerts, N. De
Kimpe, P. A. Jacobs, G. B. Marin, K. Rabaey, M. Saeys, S. Verhelst,
ChemSusChem 2017, 10, 1039.
In conclusion, we report a novel lanthanum heteroscorpionate
complex that is highly active for the versatile synthesis of cyclic
carbonates from a broad range of epoxides and CO2. The activity
displayed by complex 1 is higher than that of any other reported
rare-earth catalyst. The catalyst system is remarkably versatile
and it allows the preparation of a wide range of (bio-based) cyclic
carbonates from terminal and highly substituted internal epoxides.
These bio-based cyclic carbonates are attracting significant
interest as potential building blocks for the chemical and polymer
industries. Taking into account the high catalytic activity of the
reported lanthanum heteroscorpionate complex, we are currently
working towards understanding the mechanism of catalysis and
further developing and optimizing rare-earth metal complexes for
the chemical fixation of CO2 into organic molecules. Moreover, we
are working on the production of novel bio-based non-isocyanate
polyurethanes from bis-cyclic carbonates and polyamines.
For recent reviews of cyclic carbonate synthesis see: a) C. Martín, G.
Fiorani, A. W. Kleij, ACS Catal. 2015, 5, 1353; b) B. Yu, L.-N. He,
ChemSusChem 2015, 8, 52; c) M. Cokoja, M. E.Wilhelm, M. H. Anthofer,
W. A.Herrmann, F. E. Kühn, ChemSusChem 2015, 8, 2436; d) B.-H. Xu,
J.-Q. Wang, J. Sun, Y. Huang, J.-P. Zhang, X.-P. Zhang, S.-J. Zhang,
Green Chem. 2015, 17, 108; e) J. W. Comerford, I. D. V. Ingram, M.
North, X. Wu, Green Chem. 2015, 17, 1966.
[4]
For recent reviews of polycarbonate synthesis see: a) D. J. Darensbourg,
2007, 107, 2388–2410. b) X.-B. Lu, W.-M. Ren, G.-P. Wu, Acc. Chem.
Res. 2012, 45, 1721–1735. c) D. J. Darensbourg, S. J. Wilson, Green
Chem. 2012, 14, 2665. d) D. J. Darensbourg, A. D. Yeung, Polym. Chem.,
2014, 5, 3949. e) M. Taherimehr, P. P. Pescarmona, J. Appl. Polym. Sci.
2014, 131, 41141. f) Y. Qin, X. Sheng, S. Liu, G. Ren, X. Wang, F. Wang,
J. CO2 Util. 2015, 11, 3. g) S. Paul, Y. Zhu, C. Romain, R. Brooks, P. K.
Saini, C. K. Williams, Chem. Commun. 2015, 51, 6459.
[5]
[6]
a) B. Schäffner, F. Schäffner, S. P. Verevkin, A. Börner, Chem. Rev.
2010, 110, 4554; b) M. North, P. Villuendas, Org. Lett. 2010, 12, 2378;
c) V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energy
Environ. Sci. 2011, 4, 3243; d) B. Scrosati, J. Hassoun, Y.-K. Sun,
Energy Environ. Sci. 2011, 4, 3287; e) V. Besse, F. Camara, C. Voirin,
R. Auvergne, S. Caillol, B. Boutevin, Polym. Chem. 2013, 4, 4545.
(a) M. Szostak, D. J. Procter, Angew. Chem. Int. Ed. Engl. 2012, 51,
9238; b) F. T. Edelmann, Chem. Soc. Rev. 2012, 41, 7657; c) B. D. Ward,
L. H. Gade, Chem. Commun. 2012, 48, 10587; d) X. Zhu, S. Wang, S.
Zhou, Y. Wei, L. Zhang, F. Wang, Z. Feng, L. Guo, X. Mu, Inorg. Chem.
2012, 51, 7134; e) S. D. Bennett, B. A. Core, M. P. Blake, S. J. A. Pope,
P. Mountford, B. D. Ward, Dalton Trans. 2014, 43, 5871; f) R. Zeng, H.
Sheng, Y. Zhang, Y. Feng, Z. Chen, J. Wang, M. Chen, M. Zhu, Q. Guo,
J. Org. Chem. 2014, 79, 9246; g) J.-F. Carpentier, Organometallics 2015,
34, 4175; h) W. Gu, P. Xu, Y. Wang, Y. Yao, D. Yuan, Q. Shen,
Organometallics 2015, 34, 2907; i) S. Fadlallah, M. Terrier, C. Jones, P.
Roussel, F. Bonnet, M. Visseaux, Organometallics 2016, 35, 456; j) F. T.
Edelmann, Coord. Chem. Rev. 2016, 306, 346.
Experimental Section
All epoxide substrates and reagents commercially available (Alfa, Aldrich,
Fluka) were used as received unless specified otherwise. [LaCl3(thf)x],
Li[N(SiHMe2)2], [La{N(SiHMe2)2}3(thf)x], bpzcpH and epoxides to
synthesize cyclic carbonates 4a-4e and 4g were prepared according to
literature procedures.[9,10,14] Carbon dioxide was purchased from Air
Liquide and used without further purification. Reactions for the synthesis
of bpzcpH and complex 1 were performed using standard Schlenk-tube
techniques under an atmosphere of dry nitrogen. Solvents were distilled
from appropriate drying agents and degassed before use. Microanalyses
were carried out with a Perkin-Elmer 2400 CHN analyzer. 1H, and 13C NMR
spectra were recorded on a Varian Inova FT-500, (1H NMR 500 MHz and
13C NMR 125 MHz), spectrometer and referenced to the residual
deuterated solvent. The NOESY-1D spectra were recorded with the
following acquisition parameters: irradiation time 2 s and number of scans
256, using standard VARIAN-FT software. Two-dimensional NMR spectra
were acquired using standard VARIAN-FT software and processed using
an IPC-Sun computer.
[7]
[8]
a) J. Qin, P. Wang, Q. Li, Y. Zhang, D. Yuan, Y. Yao, Chem. Commun.
2014, 50, 10952. b) A. Decortes, R. M. Haak, C. Martín, M. M. Belmonte,
E. Martin, J. Benet-Buchholz, A. W. Kleij, Macromolecules 2015, 48,
8197. c) Z. Zhao, J. Qin, C. Zhang, Y. Wang, D. Yuan, Y. Yao, Inorg.
Chem., 2017, 56, 4569. d) J. Qin, B. Xu, Y. Zhang, D. Yuan, Y. Yao, M.
A. Hillmyer, W. B. Tolman, B. Rieger, X.-B. Lu, Green Chem. 2016, 18,
4270.
Acknowledgements
The authors gratefully acknowledge financial support from the
Ministerio de Economía y Competitividad (MINECO), Spain
(Grant Nos. CTQ2014-51912-REDC and CTQ2014-52899-R). Dr.
José A. Castro-Osma acknowledges financial support from the
Plan Propio de la Universidad de Castilla-La Mancha..
a) A. Otero, J. Fernández-Baeza, A. Lara-Sánchez, C. Alonso-Moreno,
I. Márquez-Segovia, L. F. Sánchez-Barba, A. M. Rodríguez, Angew.
Chem. Int. Ed. Engl. 2009, 48, 2176; b) A. Otero, A. Lara-Sánchez, J.
Fernández-Baeza, C. Alonso-Moreno, I. Márquez-Segovia, L. F.
Sánchez-Barba, J. A. Castro-Osma, A. M. Rodríguez, Dalton Trans.
2011, 40, 4687; c) A. Otero, A. Lara-Sánchez, C. Nájera, J. Fernández-
Baeza, I. Márquez-Segovia, J. A. Castro-Osma, J. Martínez, L. F.
Sánchez-Barba, A. M. Rodríguez, Organometallics 2012, 31, 2244; d) A.
Otero, J. Fernández-Baeza, A. Lara-Sánchez, L. F. Sánchez-Barba,
Coord. Chem. Rev. 2013, 257, 1806; e) I. Márquez-Segovia, A. Lara-
Sánchez, A. Otero, J. Fernández-Baeza, J. A. Castro-Osma, L. F.
Sánchez-Barba, A. M. Rodríguez, Dalton Trans. 2014, 43, 9586; f) A.
Otero, A. Lara-Sánchez, J. A. Castro-Osma, I. Márquez-Segovia, C.
Alonso-Moreno, J. Fernández-Baeza, L. F. Sánchez-Barba, A. M.
Rodríguez, New J. Chem. 2015, 39, 7672; g) J. Martínez, A. Otero, A.
Lara-Sánchez, J. A. Castro-Osma, J. Fernández-Baeza, L. F. Sánchez-
Barba, A. M. Rodríguez, Organometallics 2016, 35, 1802.
Keywords: Carbon Dioxide • Catalysis • Cyclic Carbonates •
Rare-earth complexes • Epoxide
[1]
a) M. Aresta, in Carbon Dioxide as Chemical Feedstock, Wiley-VCH
Verlag GmbH Co. KGaA, 2010; b) M. Peters, B. Kçhler, W.
&
Kuckshinrichs, W. Leitner, P. Markewitz, T. E. Müller, ChemSusChem
2011, 4, 1216; c) E. A. Quadrelli, G. Centi, J.-L. Duplan, S. Perathoner,
ChemSusChem 2011, 4, 1194; d) New and Future Developments in
Catalysis, Activation of Carbon Dioxide (Ed.: S. L. Suib), Elsevier B. V.
2013; e) M. Aresta, A. Dibenedetto, A. Angelini, Chem. Rev. 2014, 114,
1709; f) A. Otto, T. Grube, S. Schiebahn, D. Stolten, Energy Environ. Sci.
2015, 8, 3283; g) A. J. Martín, G. O. Larrazábal, J. Pérez-Ramírez, Green
Chem. 2015, 17, 5114; h) G. Fiorani, W. Guo, A. W. Kleij, Green Chem.
2015, 17, 1375; i) M. Poliakoff, W. Leitner, E. S. Streng, Faraday Discuss.
2015, 183, 9. j) A. W. Kleij, M. North, A. Urakawa, ChemSusChem 2017,
10, 1036.
[9]
a) A. Otero, J. Fernández-Baeza, A. Antiñolo, J. Tejeda, A. Lara-
Sánchez, L. F. Sánchez-Barba, A. M. Rodríguez, M. A. Maestro, J. Am.
Chem. Soc. 2004, 126, 1330; b) A. Otero, J. Fernández-Baeza, A.
Antiñolo, A. Lara-Sánchez, E. Martínez-Caballero, J. Tejeda, L. F.,
Sánchez-Barba, C. Alonso-Moreno, I. López-Solera, Organometallics
2008, 27, 976.
This article is protected by copyright. All rights reserved.