6360
A. R. Smith et al. / Tetrahedron Letters 53 (2012) 6358–6360
Me
Acknowledgments
Y(L)2
NH
Y[N(TMS)2]3
NH2
alkene
Generous financial support for this research was provided by
the National Institute of General Medical Science and the National
Science Foundation.
- NH(TMS)2
Me
insertion
catalyst activation
Me
NH
Y(L)2
NH
Supplementary data
Me
Me
Supplementary data associated with this article can be found, in
protonolysis
Me
NH2
References and notes
1. (a) Rare Earth Coordination Chemistry Fundamentals and Applications; Huang, C.-
H., Ed.; John Wiley & Sons: Singapore, 2010; (b) Gade, L. H. Chem. Commun.
2000, 173–181; (c) Anwander, R. Top. Organomet. Chem. 1999, 2, 1–61; (d)
Mishra, S. Coord. Chem. Rev. 2008, 252, 1996–2025.
2. Selected references within: (a) Labinger, J. A.; Bercaw, J. E. Nature 2002, 417,
507–514; Selected references within: (b) Shilov, A. E.; Shul’pin, G. B. Chem. Rev.
1997, 97, 2879–2932; (c) Podkolzin, S. G.; Stangland, E. E.; Jones, M. E.;
Peringer, E.; Lercher, J. A. J. Am. Chem. Soc. 2007, 129, 2569–2576; (d) Evans, W.
J.; Davis, B. L.; Champagne, T. M.; Ziller, J. W. Proc. Natl. Acad. Sci. U.S.A. 2006,
103, 12678–12683.
3. (a) Nishiura, M.; Hou, Z. Nat. Chem. 2010, 2, 257–268; (b) Hou, Z.; Luo, Y.; Li, X. J.
Organomet. Chem. 2006, 691, 3114–3121; (c) Nakayama, Y.; Yasuda, H. J.
Organomet. Chem. 2004, 689, 4489–4498; (d) Gromada, J.; Carpentier, J.-F.;
Mortreux, A. Coord. Chem. Rev. 2004, 248, 397–410.
4. (a) Müller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008,
108, 3795–3892; (b) Hultzsh, K. C.; Gribkov, D. V.; Hampel, F. J. Organomet.
Chem. 2005, 690, 4441–4452; (c) Roesky, P. W.; Müller, T. E. Angew. Chem., Int.
Ed. 2003, 42, 2708–2710; (d) Aillaud, I.; Collin, J.; Hannedouche, J.; Schulz, E.
Dalton Trans. 2007, 5105–5118; (e) Chemler, S. R. Org. Biomol. Chem. 2009, 7,
3009–3019.
Scheme 1. Simplified mechanism of yttrium-catalyzed intramolecular
hydroamination.
In order to determine the impact of differing concentrations of
THF and the influence of alternative solvents on the stereochemical
aspects of this reaction, we subsequently examined the diastere-
oselectivity of hydroamination/cyclization of 5 in the presence of
precatalyst 4 (Table 5). A small quantity of THF moderately in-
creased trans/cis stereoselectivity with a slight increase in reaction
efficiency (entry 2), while the use of either THF or 1,4-dioxane as
the reaction solvent resulted in a marked suppression of the rate
of hydroamination (entries 3 and 4). In this context it is notewor-
thy that the utilization of t-butyl methyl ether as the reaction sol-
vent resulted not only in an enhancement of rate but also
diastereoselectivity (entry 5). It is also of interest that the substitu-
tion of chlorobenzene or benzotrifluoride for C6D6 resulted in an
appreciable improvement of the efficiency of cyclization and dia-
stereoselectivity (entries 6 and 7).
Potent donor ligands can have a substantial effect on the pro-
gress of early transition metal-catalyzed hydroaminations. Since
Lewis basic compounds are known to coordinate to group 3 metal
complexes, the observed rate suppressions likely arise from addi-
tive-substrate competition during alkene insertion (Scheme 1).11
The concomitant increase in diastereoselectivity is consistent with
donor ligand coordination during the stereochemistry-determining
insertion step, thereby enhancing the steric environment of the
metal center.
5. (a) Kaneko, H.; Tsurugi, H.; Panda, T. K.; Mashima, K. Organometallics 2010, 29,
3463–3466; (b) Zi, G. Dalton Trans. 2009, 9101–9109; (c) Riegert, D.; Collin, J.;
Meddour, A.; Schulz, E.; Trifonov, A. J. Org. Chem. 2006, 71, 2514–2517; (d) Kim,
Y. K.; Livinghouse, T.; Horino, Y. J. Am. Chem. Soc. 2003, 125, 9560–9561; (e)
Kim, J. Y.; Livinghouse, T. Org. Lett. 2005, 7, 4391–4393; (f) Hong, S.; Marks, T. J.
Acc. Chem. Res. 2004, 37, 673–686.
6. Bradley, D. C.; Ghotra, J. S.; Hart, F. A. J. Chem. Soc., Dalton Trans. 1973, 1021–
1023.
7. Kim, Y. K.; Livinghouse, T.; Bercaw, J. E. Tetrahedron Lett. 2001, 42, 2933–2935.
8. The negligible influence of THF has been reported for lanthanocene catalysts:
Gagné, M. R.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1992, 114, 275–294.
9. For rate studies involving group 3 complexes, see: (a) Li, Y.; Marks, T. J. J. Am.
Chem Soc. 1996, 118, 9295–9306; (b) Hong, S.; Kawaoka, A. M.; Marks, T. J. J. Am.
Chem. Soc. 2003, 125, 15878–15892; (c) Ryu, J. S.; Li, G. Y.; Marks, T. J. J. Am.
Chem. Soc. 2003, 125, 12584–12605; (d) Gribkov, D. V. L.; Hultzsch, K. C.;
Hampel, F. J. Am. Chem. Soc. 2006, 128, 3748–3759; (e) Giardello, M. A.;
Conticello, V. P.; Brard, L.; Gagné, M. R.; Marks, T. J. J. Am. Chem. Soc. 1994, 116,
10241–10254; For rate studies involving Zr(IV) catalysts, see: (f) Leitch, D. C.;
Platel, R. H.; Schafer, L. L. J. Am. Chem. Soc. 2011, 133, 15453–15463; (g) Manna,
K.; Xu, S.; Sadow, A. D. Angew. Chem., Int. Ed. 2011, 50, 1865–1868.
10. (a) Skinner, M. E. G.; Mountford, P. J. Chem. Soc., Dalton Trans. 2002, 1694–1703;
(b) Atwood, J. L.; Hunter, W. E.; Rogers, R. D.; Holton, J.; McMeeking, J.; Pearce,
R.; Lappert, M. F. J. Chem. Soc., Chem. Commun. 1978, 140–142.
In conclusion, the results presented here suggest considerable
latitude with regard to the reaction conditions available for group
3 metal catalyzed processes. Significantly, in some instances small
amounts of donor ligands (i.e., 1,2-DME, THF) accelerate hydroam-
ination/cyclization (Table 4, Lu and Sc) and can also lead to an in-
crease in diastereoselectivity (Table 5, entry 2). It is also of
considerable interest that the use of alternative solvents (Table 5,
entries 5–7) can result in synthetically beneficial enhancements
in both the reaction rate and stereoselectivity.
11. Motta, A.; Lanza, G.; Fragalà, I. L.; Marks, T. J. Organometallics 2004, 23, 4097–
4104.