Chemistry - A European Journal
10.1002/chem.202003756
COMMUNICATION
substrates, excellent yields, with no use of air- and moisture-
sensitive reagents, and effortless purification of the products
because of the formation of easily removable byproducts. More
1663; c) J.-G. Kim, D. O. Jang, Synlett 2010, 3049-3052; d) G. Olah, I.
Kuhn, I. Beke, Chem. Ber. 1956, 89, 862-864; e) F. Seel, J. Langer,
Chem. Ber. 1958, 91, 2553-2557.
[
[
5]
Selected examples: a) G. A. Olah, M. Nojima, I. Kerekes, Synthesis
importantly, CF
3
SO
2
3 3
OCF (2a) and its analogues (e.g. TsOCF
1
3
5
973, 1973, 487-488; b) T. Mukaiyama, T. Tanaka, Chem. Lett. 1976, 5,
03-306; c) L. A. Carpino, A. El-Faham, J. Am. Chem. Soc. 1995, 117,
401-5402; d) A. Takaoka, H. Iwakiri, N. Ishikawa, Bull. Chem. Soc.
(
2b) and PhCOOCF
3
(2c)) have been verified as safe precursors
or replacements for difluorophosgene and anhydrous fluoride
and as promising deoxyfluorination reagents for carboxylic acids,
only when appropriate initiators were employed. This reaction
Jpn. 1979, 52, 3377-3380; e) V. A. Petrov, S. Swearingen, W. Hong, W.
C. Petersen, J. Fluorine Chem. 2001, 109, 25-31; f) O. Cohen, R.
Sasson, S. Rozen, J. Fluorine Chem. 2006, 127, 433-436.
represents the first example of using CF
fluorination reagent. Application of CF
3
SO
2
OCF
3
as a viable
and its
6]
Selected examples: a) W. R. Hasek, W. C. Smith, V. A. Engelhardt, J.
Am. Chem. Soc. 1960, 82, 543-551; b) C. Kaduk, H. Wenschuh, M.
Beyermann, K. Forner, L. A. Carpino, M. Bienert, Lett. Pept. Sci. 1996,
3
SO
2
OCF
3
analogues in other fluorination reactions is currently underway in
our laboratory.
2
, 285-288; c) G. S. Lal, G. P. Pez, R. J. Pesaresi, F. M. Prozonic, H.
Cheng, J. Org. Chem. 1999, 64, 7048-7054; d) F. Beaulieu, L.-P.
Beauregard, G. Courchesne, M. Couturier, F. LaFlamme, A. L’Heureux,
Org. Lett. 2009, 11, 5050-5063; e) A. L’Heureux, F. Beaulieu, C.
Bennett, D. R. Bill, S. Clayton, F. LaFlamme, M. Mirmehrabi, S.
Tadayon, D. Tovell, M. Couturier, J. Org. Chem. 2010, 75, 3401-3411;
f) R. P. Singh, T. Umemoto, J. Org. Chem. 2011, 76, 3113-3121; g) T.
Scattolin, K. Deckers, F. Schoenebeck, Org. Lett. 2017, 19, 5740-5743;
h) M. Gonay, C. Batisse, J.-F. Paquin, J. Org. Chem. 2020, 85, 10253-
10260.
Acknowledgements
We thank Wuhan University of Technology, the “Hundred
Talent” Program of Hubei Province, the Fundamental Research
Funds for the Central Universities (2019-YB-002, 2020-YB-003),
and the Excellent Dissertation Cultivation Funds of Wuhan
University of Technology (2018-YS-082) for financial support.
[7]
(a) R. E. Noftle, G. H. Cady, Inorg. Chem. 1965, 4, 1010-1012; b) G. A.
Olah, T. Ohayama, Synthesis 1976, 319-320; c) M. O. Hassani, A.
Germainr, D. Brunei, A. Commeyras, Tetrahedron Lett. 1981, 22, 65-
68; d) M. Oudrhiri-Hassani, D. Brunel, A. Germain, A. Commeyras, J.
Fluorine Chem. 1984, 25, 219-232; e) S. L. Taylor, J. C. Martin, J. Org.
Chem. 1987, 52, 4147-4156.
Keywords: acyl fluorides • carboxylic acids • trifluoromethyl
trifluoromethanesulfonate • deoxyfluorination
[
8]
(a) A. A. Kolomeitsev, M. Vorobyev, H. Gillandt, Tetrahedron Lett. 2008,
[
1]
Selected recent reviews: a) S. Fustero, A. Simon-Fuentes, P. Barrio, G.
Haufe, Chem. Rev. 2015, 115, 871-930; b) L. Yang, T. Dong, H. M.
Revankar, C.-P. Zhang, Green Chem. 2017, 19, 3951-3992; c) J.
Moschner, V. Stulberg, R. Fernandes, S. Huhmann, J. Leppkes, B.
Koksch, Chem. Rev. 2019, 119, 10718-10801; d) H. Mei, J. Han, S.
Fustero, M. Medio-Simon, D. M. Sedgwick, C. Santi, R. Ruzziconi, V. A.
Soloshonok, Chem. Eur. J. 2019, 25, 11797-11819; e) Y. Wang, X.-X.
Ming, C.-P. Zhang, Curr. Med. Chem. 2020, 27, 5599-5652; f) R. Ragni,
A. Punzi, F. Babudri, G. M. Farinola, Eur. J. Org. Chem. 2018, 2018,
4
9, 449-454; b) O. Marrec, T. Billard, J.-P. Vors, S. Pazenok, B. R.
Langlois, J. Fluorine Chem. 2010, 131, 200-207; c) C.-P. Zhang, D. A.
Vicic, Organometallics 2012, 31, 7812-7815; d) J. Barbion, S. Pazenok,
J.-P. Vors, B. R. Langlois, T. Billard, Org. Process Res. Dev. 2014, 18,
1
037-1040; e) G.-F. Zha, J.-B. Han, X.-Q. Hu, H.-L. Qin, W.-Y. Fang,
C.-P. Zhang, Chem. Commun. 2016, 52, 7458-7461; f) Q.-W. Zhang, J.
F. Hartwig, Chem. Commun. 2018, 54, 10124-10127; g) C. Chen, P.
Chen, G. Liu, J. Am. Chem. Soc. 2015, 137, 15648-15651; h) X. Qi, P.
Chen, G. Liu, Angew. Chem. 2017, 129, 9645-9649; Angew. Chem. Int.
Ed. 2017, 56, 9517-9521; i) C. Chen, Y. Luo, L. Fu, P. Chen, Y. Lan, G.
Liu, J. Am. Chem. Soc. 2018, 140, 1207-1210; j) Y.-M. Yang, J.-F. Yao,
W. Yan, Z. Luo, Z.-Y. Tang, Org. Lett. 2019, 21, 8003-8007; k) D. Chen,
L. Lu, Q. Shen, Org. Chem. Front. 2019, 6, 1801-1806.
3
500-3519.
[
[
2]
3]
a) Y. Ogiwara, N. Sakai, Angew. Chem. 2020, 132, 584-605; Angew.
Chem. Int. Ed. 2020, 59, 574-594.; b) G. Prabhu, N. Narendra,
Basavaprabhu, V. Pandurangaa, V. V. Sureshbabua, RSC Adv. 2015, 5,
4
8331-48362.
Selected examples: a) G. A. Olah, S. J. Kuhn, Org. Synth. 1965, 45, 3-
; b) A. G. Pittman, D. L. Sharp, J. Org. Chem. 1966, 31, 2316-2318;
[
[
[
9]
Y. Kobayashi, T. Yoshida, I. Kumadaki, Tetrahedron Lett. 1979, 3865-
3
866.
10] H.-X. Song, Z.-Z. Han, C.-P. Zhang, Chem. Eur. J. 2019, 25, 10907-
0912.
11] a) H. Quan, N. Zhang, X. Zhou, H. Qian, A. Sekiya, J. Fluorine Chem.
015, 176, 26-30; b) J.-W. Lee, M. T. Oliveira, H. B. Jang, S. Lee, D. Y.
6
c) C. W. Tullock, D. D. Coffman, J. Org. Chem. 1960, 25, 2016-2019; d)
G. Ung, G. Bertrand, Chem. Eur. J. 2012, 18, 12955-12957; e) C. B.
Murray, G. Sandford, S. R. Korn, D. S. Yufit, J. A. K. Howard, J.
Fluorine Chem. 2005, 126, 569-574; f) P. Švec, A. Eisner, L. Kolářová,
T. Weidlich, V. Pejchal, A. Růžička, Tetrahedron Lett. 2008, 49, 6320-
1
2
Chi, D. W. Kim, C. E. Song, Chem. Soc. Rev. 2016, 45, 4638-4650; c)
S. Liang, G. B. Hammond, B. Xu, Chem. Eur. J. 2017, 23, 17850-17861.
a) S. Guo, F. Cong, R. Guo, L. Wang, P. Tang, Nat. Chem. 2017, 9,
6
323; g) G. A. Olah, S. J. Kuhn, J. Org. Chem. 1961, 26, 237-238; h) M.
[
12]
Arisawa, Y. Igarashi, H. Kobayashi, T. Yamada, K. Bando, T. Ichikawa,
M. Yamaguchi, Tetrahedron 2011,67, 7846-7859; i) G. A. Olah, M.
Nojima, I. Kerekes, J. Am. Chem. Soc. 1974, 96, 925-927; j) I.
Saidalimu, S. Suzuki, E. Tokunaga, N. Shibata, Chem. Sci. 2016, 7,
5
46-551; b) H. Yang, F. Wang, X. Jiang, Y. Zhou, X. Xu, P. Tang,
Angew. Chem. Int. Ed. 2018, 57, 13266-13270; c) J. Liu, Y. Wei, P.
Tang, J. Am. Chem. Soc. 2018, 140, 15194-15199; d) S. Yang, M.
Chen, P. Tang, Angew. Chem. Int. Ed. 2019, 58, 7840-7844; e) Q.
Huang, P. Tang, J. Org. Chem. 2020, 85, 2512-2519; f) Z. Deng,
M.Zhao, F. Wang, P. Tang, Nature Commun. 2020, 11, 2569; g) X.
Jiang, P. Tang, Org. Lett. 2020, 22, 5135-5139; h) M. Zhou, C. Ni, Y.
Zeng, J. Hu, J. Am. Chem. Soc. 2018, 140, 6801-6805.
2
106-2110; k) M. Meanwell, J. Lehmann, M. Eichenberger, R. E. Martin,
R. Britton, Chem. Commun. 2018, 54, 9985-9988; l) G. A. Olah, J. T.
Welch, Y. D. Vankar, M. Nojima, I. Kerekes, J. A. Olah, J. Org. Chem.
1
979, 44, 3872-3881; m) N. Ishikawa, T. Kitazume, T. Yamazaki, Y.
Mochida, T. Tatsuno, Chem. Lett. 1981, 761-764; n) J. H. Clark, A. J.
Hyde, D. K. Smith, J. Chem. Soc., Chem. Commun. 1986, 791-793; o)
H. Liu, P. Wang, P. Sun, J. Fluorine Chem. 1989, 43, 429-433; p) Y.
Ogiwara, S. Hosaka, N. Sakai, Organometallics 2020, 39, 856-861; q)
P. J. Morgan, M. W. D. Hanson-Heine, H. P. Thomas, G. C. Saunders,
A. C. Marr, P. Licence, Organometallics 2020, 39, 2116-2124.
[
13] Unfortunately, the reactions of ((benzyloxy)carbonyl)phenylalanine and
(
(
tert-butoxycarbonyl)alanine (as examples of amino acids) with TfOCF
3
2a) and DMAP under the standard conditions gave complicated
mixtures, from which we couldn’t isolate the corresponding pure acyl
fluorides.
[
4]
Selected examples: a) C. Chen, C.-T. Chien, C.-H. Su, J. Fluorine
Chem. 2002, 115, 75-77; b) S. B. Munoz, H. Dang, X. Ispizua-
Rodriguez, T. Mathew, G. K. S. Prakash, Org. Lett. 2019, 21, 1659-
4
This article is protected by copyright. All rights reserved.