Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
mostly from the aldehyde label on CA-12 (Fig. S17). Finally, flow
cytometry also confirmed the specific labeling (Fig. S18).
In conclusion, we have developed a simple method to install
aldehyde on proteins. In this method, the latent aldehyde
functionality enables a one-pot labeling procedure; the free
unbound probes were not “activated” and this method is
suitable for real-time imaging of membrane proteins. Like many
affinity labeling approaches, the target specificity/isoform
selectivity of the ligand has important implications for this
method: the labeling outcome is a combination of all the
proteins that can bind the ligand. Thus, additional measures and
controls would be necessary to deconvolute the labeling
outcome and the verification of the labeling specificity is always
important. Unfortunately, the use of oxidative cleavage is a
major limitation due to protein glycosylation. Deglycosylation is
able to suppress the background, but it also alters the native
proteome. In addition, cells contain a range of biomolecules
having the diol moiety but cannot be removed by
deglycosylases, such as the glycosylphosphatidyl- inositol (GTI)-
anchored proteins, the glycosaminoglycan (GAG) chain on
proteoglycans, glycolipids, and the furanose-containing
molecules such as RNA and ATP. These molecules may
complicate the labeling selectivity and careful control
experiments would be required. For in vitro studies, this
approach serves as a simple way to incorporate aldehyde into
proteins; for native proteins, the method may be limited to
certain applications where protein isolation is the main
objective, such as target identification.
J. Am. Chem. Soc., 2006, 128, 3273.
DOI: 10.1039/D0CC01982H
13. H. Wakabayashi, M. Miyagawa, Y. Koshi, Y. Takaoka, S. Tsukiji
and I. Hamachi, Chem. Asian J., 2008, 3, 1134.
14. I. S. Carrico, B. L. Carlson and C. R. Bertozzi, Nat Chem Biol,
2007, 3, 321.
15. M. Rashidian, J. M. Song, R. E. Pricer and M. D. Distefano, J.
Am. Chem. Soc., 2012, 134, 8455.
16. J. D. Cohen, P. Zou and A. Y. Ting, ChemBioChem, 2012, 13,
888.
17. D. Schumacher, J. Helma, F. A. Mann, G. Pichler, F. Natale, E.
Krause, M. C. Cardoso, C. P. Hackenberger and H. Leonhardt,
Angew. Chem. Int. Ed. Engl., 2015, 54, 13787.
18. I. Chen, M. Howarth, W. Lin and A. Y. Ting, Nat. Methods,
2005, 2, 99.
19. V. W. Cornish, K. M. Hahn and P. G. Schultz, J. Am. Chem. Soc.,
1996, 118, 8150.
20. L. K. Mahal, K. J. Yarema and C. R. Bertozzi, Science, 1997, 276,
1125.
21. A. Tuley, Y. J. Lee, B. Wu, Z. U. Wang and W. R. Liu, Chem.
Commun., 2014, 50, 7424.
22. R. Kubota and I. Hamachi, Chem. Soc. Rev., 2015, 7, 4454.
23. J. Ohata and Z. T. Ball, J. Am. Chem. Soc., 2017, 139, 12617.
24. G. Chen, A. Heim, D. Riether, D. Yee, Y. Milgrom, M. A.
Gawinowicz and D. Sames, J. Am. Chem. Soc., 2003, 125, 8130.
25. S. R. Adusumalli, D. G. Rawale, U. Singh, P. Tripathi, R. Paul, N.
Kalra, R. K. Mishra, S. Shukla and V. Rai, J. Am. Chem. Soc., 2018,
140, 15114.
26. M. J. Evans, A. Saghatelian, E. J. Sorensen and B. F. Cravatt,
Nat. Biotechnol., 2005, 23, 1303.
27. F. Yuan, S. H. Verhelst, G. Blum, L. M. Coussens and M. Bogyo,
J. Am. Chem. Soc., 2006, 128, 5616.
28. S. R. Adusumalli, D. G. Rawale, K. Thakur, L. Purushottam, N.
C. Reddy, N. Kalra, S. Shukla and V. Rai, Angew. Chem. Int. Ed.,
2020, DOI: 10.1002/anie.202000062.
29. H. K. Munch, J. E. Rasmussen, G. Popa, J. B. Christensen and K.
J. Jensen, Chem. Commun., 2013, 49, 1936.
30. A. Sudalai, A. Khenkin and R. Neumann, Org. Biomol. Chem.,
2015, 13, 4374.
31. T. Tamura, S. Tsukiji and I. Hamachi, J. Am. Chem. Soc., 2012,
134, 2216.
This work was supported by grants from the Research
Grants Council of the HKSAR (AoE/P-705/16, 17321916,
17302817, 17301118, 17111319), the Laboratory for Synthetic
Chemistry and Chemical Biology of Health@InnoHK of ITC,
HKSAR, the NSFC of China (21572014, 21877093, 91953119).
32. K. Zuberbuhler, G. Casi, G. J. Bernardes and D. Neri, Chem.
Commun., 2012, 48, 7100.
33. Q. Zhou, J. E. Stefano, C. Manning, J. Kyazike, B. Chen, D. A.
Gianolio, A. Park, M. Busch, J. Bird, X. Zheng, H. Simonds-Mannes,
J. Kim, R. C. Gregory, R. J. Miller, W. H. Brondyk, P. K. Dhal and C.
Q. Pan, Bioconjug. Chem., 2014, 25, 510.
34. S. Sakamoto, S. Kiyonaka and I. Hamachi, Curr. Opin. Chem.
Biol., 2019, 50, 10.
35. C. T. Supuran, Nat. Rev. Drug Discov., 2008, 7, 168.
36. T. Miki, S. H. Fujishima, K. Komatsu, K. Kuwata, S. Kiyonaka
and I. Hamachi, Chem. Biol., 2014, 21, 1013.
37. A. Nadler and C. Schultz, Angew Chem Int. Ed., 2013, 52, 2408.
38. K. J. Bruemmer, T. F. Brewer and C. J. Chang, Curr. Opin. Chem.
Biol., 2017, 39, 17.
39. Y. H. Lee, Y. Tang, P. Verwilst, W. Lin and J. S. Kim, Chem.
Commun., 2016, 52, 11247.
40. X. Li, B. Zhang, C. Yan, J. Li, S. Wang, X. Wei, X. Jiang, P. Zhou
and J. Fang, Nat. Commun., 2019, 10, 2745.
Conflicts of interest
There are no conflicts to declare.
Notes and references
‡ These authors contributed equally to this work.
1. T. Tamura and I. Hamachi, J. Am. Chem. Soc., 2019, 141, 2782.
2. N. Krall, F. P. da Cruz, O. Boutureira and G. J. Bernardes, Nat.
Chem., 2016, 8, 103-113.
3. L. Xue, I. A. Karpenko, J. Hiblot and K. Johnsson, Nat. Chem.
Biol., 2015, 11, 917-923.
4. D. K. Kolmel and E. T. Kool, Chem. Rev., 2017, 117, 10358.
5. R. J. Spears and M. A. Fascione, Org. Biomol. Chem., 2016, 14,
7622.
6. K. F. Geoghegan and J. G. Stroh, Bioconjug Chem, 1992, 3, 138.
7. Y. Zeng, T. N. Ramya, A. Dirksen, P. E. Dawson and J. C.
Paulson, Nat. Methods, 2009, 6, 207-209.
8. A. L. Kodal, C. B. Rosen, M. R. Mortensen, T. Torring and K. V.
Gothelf, ChemBioChem, 2016, 17, 1338.
9. T. Nagase, S. Shinkai and I. Hamachi, Chem. Commun., 2001,
3, 229.
10. J. M. Gilmore, R. A. Scheck, A. P. Esser-Kahn, N. S. Joshi and M.
B. Francis, Angew. Chem. Int. Ed., 2006, 45, 5307.
11. J. I. MacDonald, H. K. Munch, T. Moore and M. B. Francis, Nat.
Chem. Biol., 2015, 11, 326.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins