J . Org. Chem. 1997, 62, 425-427
425
Nitr oa ld ol Rea ction in Aqu eou s Med ia : An
Sch em e 1
Im p or ta n t Im p r ovem en t of th e Hen r y
Rea ction
Roberto Ballini* and Giovanna Bosica
Dipartimento di Scienze Chimiche dell’Universit a` ,
Via S. Agostino n. 1, 62032 Camerino, Italy
procedures furnish a diastereomeric mixture of nitroal-
kanols; nevertheless, this seems to be not a problem since
the main uses of nitroalkanols are the conversion into
Received J une 25, 1996
R-nitro ketones1
c,8,10-12
or conjugated nitroalkenes,
which at least one stereogenic center is lost.
13-17
in
Carbon-carbon bond formation is the essence of or-
ganic synthesis; the Henry reaction, an aldol-type reac-
tion, represents one of the classical C-C bond-forming
processes, and its variants have been used extensively
in many important syntheses.1
If a diastereoselective synthesis of nitroalkanols, for
specific purposes, is required other procedures are avail-
-19
18
able; however, these methods are highly laborious and/
The classical nitroaldol reaction is performed, as
routine procedure, in presence of a base (Scheme 1) in
an organic solvent. Since basic reagents are also cata-
lysts for the aldol condensation and for the Cannizzaro
reaction when aldehydes are used as carbonyl sources,
it is necessary to adopt experimental conditions to
or produce low yields, are of moderate generality, and
are not suitable on a large scale.
The need to reduce the amount of toxic waste and
byproducts arising from chemical processes requires
increasing emphasis on the use of less toxic and envi-
ronmentally compatible materials in the design of new
5
-9,17,19
suppress these competitive reactions.
To obtain
21
synthetic methods. The time has now come for ecologi-
better yields of 2-nitro alcohols a careful control of the
basicity of the reaction medium is necessary, and long
reaction times are demanded. Furthermore, the â-ni-
troalkanols formed may undergo base-catalyzed elimina-
tion20 of water to give nitroalkenes that readily polymer-
ize. This elimination is difficult to avoid when aryl
aldehydes are employed. In addition, these standard
cal factors to be considered in the development of
synthetic procedures and for them to play an important
role in the assessment of the quality of any new synthe-
sis. Within this context, the reduced use of ecologically
suspected solvents is of considerable significance. In
recent years, there has been increasing recognition that
water is an attractive medium for many organic reac-
tions.22 The aqueous medium with respect to organic
solvent is less expensive, less dangerous, and environ-
ment-friendly, while it allows the control of the pH and
the use of microaggregates such as surfactants. Gener-
ally, the low solubility23 of most reagents in water is not
an obstacle to the reactivity, which, on the contrary, is
reduced with the use of cosolvents.
(
1) (a) Seebach, D.; Colvin, E. W.; Leher, F.; Weller, T. Chimia 1979,
3
3, 1-18. (b) Rosini, G. In Comprehensive Organic Synthesis; Trost,
B. M., Ed.; Pergamon Press: Oxford, 1991; Vol. 2, p 321. (c) Rosini,
G.; Ballini, R. Synthesis 1988, 833-847. (d) Rosini, G.; Ballini, R.;
Sorrenti, P. Synthesis 1983, 1014-1016.
(
2) Ballini, R.; Bosica, G.; Forconi, P. Tetrahedron 1996, 52, 1677-
1
684.
3) Sasai, H.; Suzuki, T.; Itoh, N.; Tanaka, K.; Date, T.; Okamura,
K.; Shibasaki, M. J . Am. Chem. Soc. 1993, 115, 10372-10373.
4) Kiyooka, S.; Tsutsui, T.; Maeda, H.; Kaneoko, Y.; Isobe, K.
(
(
In connection with our interest devoted to the synthe-
Tetrahedron Lett. 1995, 36, 6531-6534.
24
ses of natural products via R-nitro ketones or nitroalk-
(
(
(
5) Vaderbilt, B. M.; Hass, H. B. Ind. Eng. Chem. 1940, 32, 34-38.
6) Hass, H. B.; Riley, E. F. Chem. Rev. 1943, 32, 373-430.
7) Lichtenthaler, F. W. Angew. Chem., Int. Ed. Engl. 1964, 3, 211-
enes,25 we decided to investigate the possibility to achieve
the nitroaldol reaction in water. After some trials we
found that the Henry reaction can be performed under
very mild reaction conditions, in aqueous media, using a
stoichiometic amount of the nitroalkane 1 and the
aldehyde 2 in NaOH 0.025 M, in the presence of cetylt-
rimethylammonium chloride (CTACl) as cationic surfac-
tant. As showed in Table 1 the yields are from good to
excellent when the nitroalkanes react with aliphatic
aldehydes, while the yields slightly decrease with the
2
24.
(
8) M e´ lot, J .-M.; Texier-Boullet, F.; Foucaud, A. Tetrahedron Lett.
1
986, 27, 493.
(9) Costantino, V.; Curini, M.; Marmottini, F.; Rosati, O.; Pisani,
E. Chem. Lett. 1994, 2215.
(
(
10) Hurd, C. D.; Nilson, M. E. J . Org. Chem. 1955, 20, 927-936.
11) (a) Rosini, G.; Ballini, R. Synthesis 1983, 543-544. (b) Rosini,
G.; Ballini, R.; Sorrenti, P.; Petrini, M. Synthesis 1984, 607-608.
(
12) Rosini, G.; Ballini, R.; Petrini, M.; Marotta, E.; Righi, P. Org.
Prep. Proc. Int. 1990, 22, 707-746.
13) Barrett, A. G. M.; Graboski, G. G. Chem. Rev. 1986, 86, 751-
62.
(
7
2
2
(
14) Kabalka, G. W.; Varma, R. S. Org. Prep. Proc. Int. 1987, 19,
83-328.
(
160-2162.
(21) (a) Amato, J . Science 1993, 259, 1538-1541. (b) Illman, D. L.
Chem. Eng. News 1993, 71, 5-6. (c) Illman, D. L. Chem. Eng. News
1994, 72, 22-27.
15) Ballini, R.; Castagnani, R.; Petrini, M. J . Org. Chem. 1992, 57,
(
(
16) Ballini, R.; Palestini, C. Tetrahedron Lett. 1994, 35, 5731-5734.
17) Perekalin, V. V. Unsaturated Nitro Compounds; Israel Program
(22) Li, C. J . Chem. Rev. 1993, 93, 2023-2035.
(23) Fringuelli, F.; Pani, G.; Piermatti, O.; Pizzo, F. Tetrahedron
1994, 50, 11499-11508.
for Scientific Translation, J erusalem, 1964.
18) (a) Seebach, D.; Beck, A. K.; Mukhopadhyay, T.; Thomas, E.
(
(24) (a) Rosini, G.; Ballini, R.; Sorrenti, P. Tetrahedron 1983, 39,
4127-4132. (b) Rosini, G.; Ballini, R.; Petrini, M.; Sorrenti, P.
Tetrahedron 1984, 40, 3809-3814. (c) Rosini, G.; Ballini, R.; Petrini,
M. Synthesis 1985, 269-271. (d) Rosini, G.; Ballini, R.; Petrini, M.
Synthesis 1986, 46-48. (e) Ballini, R.; Petrini, M.; Rosini, G. Synthesis
1986, 849-852. (f) Ballini, R.; Petrini, M.; Rosini, G. J . Org. Chem.
1990, 55, 5159-5161. (g) Ballini, R. J . Chem. Soc., Perkin Trans. 1
1991, 1419-1421. (h) Ballini, R.; Bosica, G. J . Chem. Res., Synop. 1993,
371. (i) Ballini, R.; Bosica, G. J . Org. Chem. 1994, 59, 5466-5467.
(25) (a) Ballini, R.; Petrini, M. J . Chem. Soc., Perkin Trans. 1 1992,
3159-3160. (b) Ballini, R.; Bartoli, G. Synthesis 1993, 965-967. (c)
Ballini, R.; Bosica, G. J . Chem. Res. Synop. 1993, 435. (d) Ballini, R.;
Bosica, G. Synthesis 1994, 723-726. (e) Ballini, R.; Bosica, G.;
Schaafstra, R. Liebigs Ann. Chem. 1994, 1235-1237. (f) Ballini, R.;
Bosica, G.; Rafaiani, G. Helv. Chim. Acta 1995, 78, 879-882.
Helv. Chim. Acta 1982, 65, 1101-1133. (b) Eyer, M.; Seebach, D. J .
Am. Chem. Soc. 1985, 107, 3601-3606. (c) Barrett, A. G. W.; Robyr,
C.; Spilling, C. D. J . Org. Chem. 1989, 54, 1233-1234. (d) Sasai, H.;
Suzuki, T.; Arai, S.; Arai, T.; Shibasaki, M. J . Am. Chem. Soc. 1992,
1
14, 4418-4420. (e) Sasai, H.; Itoh, N.; Suzuki, T.; Shibasaki, M.
Tetrahedron Lett. 1993, 34, 855-858. (f) Sasai, H.; Kim, W.-S.; Suzuki,
T.; Shibasaki, M. Tetrahedron Lett. 1994, 35, 6123-6126. (g) Chin-
chilla, R.; N a` jera, C.; Sanchez-Agull o` , P. Tetrahedron: Asymmetry
1
994, 5, 1393-1402.
19) Baer, H. H.; Urbas, L. In The Chemistry of the Nitro and Nitroso
Groups ; Feuer, H., Ed.; Wiley Interscience: New York; 1970; Vol. 2.
20) (a) Rosini, G.; Ballini, R.; Petrini, M.; Sorrenti, P. Synthesis
985, 515-517. (b) Bandgar, B. P.; Zirange, M. B.; Wadgaonkar, P. P.
Synlett 1996, 149-150.
(
(
1
S0022-3263(96)01201-7 CCC: $14.00 © 1997 American Chemical Society