Angewandte Chemie International Edition
10.1002/anie.201711143
COMMUNICATION
Disorders for financial support. The authors are grateful to Dr.
Ryuichi Sawa, Ms. Yumiko Kubota, and Dr. Kiyoko Iijima for
assistance with NMR analysis and Dr. Tomoyuki Kimura for
assistance with X-ray crystallography.
1
3
H
N
tBuOH/H O
OH
2
1
4a•TFA
FmocHN
2
5 °C
O
1
O
=
2-naphthyl-CH2
5a
9
2% yield
dr 97:3
Keywords: Amino acids • Asymmetric catalysis • Peptides
recryst.
62% yield
dr >99:1
[
1]
a) S. Hecht, I. Huc, Foldamers: structure, properties, and applications,
Wiley-VCH, Weinheim, 2007; b) D. J. Hill, M. J. Mio, R. B. Prince, T. S.
Hughes, J. S. Moore, Chem. Rev. 2001, 101, 3893; c) R.
Gopalakrishnan, A. I. Frolov, L. Knerr, W. J. Drury III, E. Valeur, J. Med.
Chem. 2016, 59, 9599.
Rink amide
resin
Fmoc-SPPS
Ph
O
O
O
H
H
H
N
[2]
[3]
a) R. P. Cheng, S. H. Gellman, W. F. DeGrado, Chem. Rev. 2001, 101,
3219; b) D. Seebach, J. Gardiner, Acc. Chem. Res. 2008, 41, 1366.
a) E. A. Porter, X. Wang, H. S. Lee, B. Weisblum, S. H. Gellman,
Nature 2000, 404, 565; b) Y. Imamura, N. Watanabe, N. Umezawa, T.
Iwatsubo, N. Kato, T. Tomita, T. Higuchi, J. Am. Chem. Soc. 2009, 131,
7353; c) L. M. Johnson, S. Barrick, M. V. Hager, A. McFedries, E. A.
Homan, M. E. Rabaglia, M. P. Keller, A. D. Attie, A. Saghatelian, A.
Bisello, S. H. Gellman, J. Am. Chem. Soc. 2014, 136, 12848.
a) J. X. Qiu, E. J. Petersson, E. E. Matthews, A. Schepartz, J. Am.
Chem. Soc. 2006, 128, 11338; b) G. A. Lengyel, W. S. Horne, J. Am.
Chem. Soc. 2012, 134, 15906; c) C. Mayer, M. M. Müller, S. H.
Gellman, D. Hilvert, D. Angew. Chem. Int. Ed. 2014, 53, 6978; Angew.
Chem. 2014, 126, 7098.
N
N
NH2
O
N
N
N
H
H
H
O
O
O
hybrid α/β2,2 peptide 19
1% yield from resin
4
2
,2
Scheme 4. Synthesis of hybrid α/β peptide by Fmoc-SPPS.
2
,2
Fmoc-protected α-β -dipeptides 15 appeared amenable to
Fmoc-SPPS. Regarding stereochemistry, peptide chemistry
standards exceed those of asymmetric catalysis, requiring
substrates possessing at least >99:1 stereochemical integrity.
Despite the somewhat lower selectivity obtained herein, the
crystalline nature of Fmoc-protected dipeptides can compensate
[4]
[5]
[6]
[7]
Y.-D. Wu, W. Han, D.-P. Wang, Y. Gao, Y.-L. Zhao, Acc. Chem. Res.
2
008, 41, 1418.
for this drawback; a single recrystallization from hexane/Et
2
O
D. Seebach, S. Abele, T. Sifferlen, M. Hänggi, S. Gruner, P. Seiler,
Helv. Chim. Acta 1998, 81, 2218.
allowed for removal of the minor diastereomer, rendering
[
26]
dipeptide 15a ready for Fmoc-SPPS (Scheme 4).
Since the
J. D. A. Tyndall, B. Pfeiffer, G. Abbenante, D. P. Fairlie, Chem. Rev.
2005, 105, 793.
growing number of applications is found in hybrid α/β
[
27]
2,2
peptides,
the facile synthesis of diastereomerically pure α-
-dipeptides would be advantageous. In contrast to other
geminally substituted amino acids —α,α-disubstituted α-amino
[8]
Examples of β -amino acids bearing a heteroatom at the α-carbon.
2
,2
β
Oxygen: a) G. V. M. Sharma, K. Rajender, G. Sridhar, P. S. Reddy, M.
Kanakaraju, Carbohydr. Res. 2014, 388, 8; b) F. Rodríguez, F. Corzana,
A. Avenoza, J. H. Busto, J. M. Peregrina, M. M. Zurbano, Curr. Topics
Med. Chem. 2014, 14, 1225. Nitrogen: c) L. Mata, A. Avenoza, J. H.
Busto, F. Corzana, J. M. Peregrina, Chem. Eur. J. 2012, 18, 15822; d)
N. Mazo, I. García-González, C. D. Navo, F. Corzana, G. Jiménez-
Osés, A. Avenoza, J. H. Busto, J. M. Peregrina, Org. Lett. 2015, 17,
5804. Sulfur: e) I. García-González, L. Mata, F. Corzana, G. Jiménez-
Osés, A. Avenoza, J. H. Busto, J. M. Peregrina, Chem. Eur. J. 2015, 21,
1156.
3
,3
acids and β -amino acids, both of which often need to be
[
11]
coupled under special conditions — 15 is sufficiently reactive
under the standard Fmoc-SPPS conditions. Thus dipeptide 15a
was incorporated into the middle of the peptide sequence on a
[
28]
Rink-amide resin,
followed by cleavage from the polymer
support and HPLC purifications to provide analytically pure
peptide 19 in good overall yield. Functionalizations of the
[
29]
[9]
For selected recent examples, see: a) T. Fujino, Y. Goto, H. Suga, H.
Murakami, J. Am. Chem. Soc. 2016, 138, 1962; b) D. F. Kreitler, D. E.
Mortenson, K. T. Forest, S. H. Gellman, J. Am. Chem. Soc. 2016, 138,
terminal olefin in the resulting peptide would also be feasible.
In summary, we have documented a new entry for the
2
,2
catalytic asymmetric synthesis of quaternary β -amino acids. A
proficient chiral catalyst system comprising Pd(dmdba) and a
6
498.
2
[10] D. Seebach, A. K. Beck, S. Capone, G. Deniau, U. Grošelj, E. Zass,
Synthesis 2009, 1.
Trost ligand promotes the decarboxylative allylation of 4-
substituted isoxazolin-5-ones in a stereoselective fashion. The
allylated products are converted to a range of the otherwise
[11] S. Abele, D. Seebach, Eur. J. Org. Chem. 2000, 1.
[12] Aldehydes: a) R. Kastl, H. Wennemers, Angew. Chem. Int. Ed. 2013,
52, 7228; Angew. Chem. 2013, 125, 7369. Indoles: b) J.-Q. Weng, Q.-
M. Deng, L. Wu, K. Xu, H. Wu, R.-R. Liu, J.-R. Gao, Y.-X. Jia, Org. Lett.
2014, 16, 776; c) K. Mori, M. Wakazawa, T. Akiyama, Chem. Sci. 2014,
2
,2
inaccessible β -amino acids. Moreover, the N–O bond in the
products participates in the KAHA ligation with α-ketoacids,
2
,2
affording expeditious access to Fmoc-protected α-β -dipeptides.
5
, 1799. Malononitrile: d) S. Chen, Q. Lou, Y. Ding, S. Zhang, W. Hu, J.
Finally, the standard Fmoc-SPPS procedure can routinely build
Zhao, Adv. Synth. Catal. 2015, 357, 2437. 3-Alkylidene oxindoles: e) Y.
Zhong, S. Ma, Z. Xu, M. Chang, R. Wang, RSC Adv. 2014, 4, 49930.
Arylboronic acids: f) J.-H. Fang, J.-H. Jian, H.-C. Chang, T.-S. Kuo, W.-
Z. Lee, P.-Y. Wu, H.-L. Wu, Chem. Eur. J. 2017, 23, 1830.
2
,2
up mixed α/β peptides, showcasing the potential of the current
protocol.
[13] a) S. Jautze, R. Peters, Synthesis 2010, 365; b) M. D. Diaz-de-Villegas,
J. A. Gálvez, R. Badorrey, P. López Ram de Víu, Adv. Synth. Catal.
Acknowledgements
2
014, 356, 3261.
This work was financially supported by JST, ACT-C
[
14] For catalytic asymmetric transformations of pyrrolidin-2,3-diones,
followed by regioselective Bayer–Villiger oxidation, see: E. Badiola, I.
Olaizola, A. Vázquez, S. Vera, A. Mielgo, C. Palomo, Chem. Eur. J.
2017, 23, 8185.
(
JPMJCR12YO), and JSPS KAKENHI Grant Number
JP16K18856. J.-S.Y. is a JSPS International Research Fellow.
H.N. thanks the Astellas Foundation for Research on Metabolic
This article is protected by copyright. All rights reserved.