Yanqing Zhang and Junliang Zhang
UPDATES
À
À
References
only two N O bonds but also one C N bond were re-
duced.
[1] a) I. B. Seiple, S. Su, I. S. Young, A. Nakamura, J. Ya-
maguchi, L. Jørgensen, R. A. Rodriguez, D. P. OꢀMal-
ley, T. Gaich, M. Kçck, P. S. Baran, J. Am. Chem. Soc.
2011, 133, 14710–14726; b) D. X. Hu, M. D. Clift, K. E.
Lazarski, R. J. Thomson, J. Am. Chem. Soc. 2011, 133,
1799–1804; c) M. Movassaghi, D. S. Siegel, S. Han,
Chem. Sci. 2010, 1, 561–566; d) H. Fan, J. Peng, M. T.
Hamann, J.-F. Hu, Chem. Rev. 2008, 108, 264–287;
e) J. T. Gupton, Pyrrole Natural Products with Antitu-
mor Properties, in: Heterocyclic Antitumor Antibiotics,
Topics in Heterocyclic Chemistry, (Ed.: M. Lee), Vol. 2,
Springer, Heidelberg, Berlin, 2006, pp 53–92; f) R. J.
Sundberg, in: Comprehensive Heterocyclic Chemistry
II, Vol. 2, (Eds.: A. R. Katritzky, C. W. Rees, E. F. V.
Scriven), Pergamon Press, Oxford, 1996, pp 119–206.
[2] a) F. Bellina, R. Rossi, Tetrahedron 2006, 62, 7213–
7256; b) A. Fꢃrstner, Angew. Chem. 2003, 115, 3706–
3728; Angew. Chem. Int. Ed. 2003, 42, 3582–3603; c) G.
Murineddu, G. Loriga, E. Gavini, A. T. Peanna, A. C.
Mulꢄ, G. A. Pinna, Arch. Pharm. Med. Chem. 2001,
334, 393–398; d) J. Lehuꢅdꢅ, B. Fauconneau, L. Barrier,
M. Ourakow, A. Piriou, J.-M. Vierfond, Eur. J. Med.
Chem. 1999, 34, 991–996.
In summary, we have developed an efficient synthe-
sis of highly substituted pyrroloACHTUNTRGENN[GU 3,4-d]AHCTUNGTRNEN[UGN 1,2]oxazepines
from 1-(1-alkynyl)-cyclopropyl oximes with nitrones
by gold-catalyzed 1,3-dipolar cycloaddition reactions
under mild reaction conditions This gold(I)-catalyzed
cycloaddition is regiospecific and highly diastereose-
lective. An enantioselective synthesis of chiral
pyrroloACHTUNGTRENNUNG[3,4-d]ACHTUNGTRENNUNG[1,2]oxazepine could be also achieved
from the corresponding optically active substrate and
a complete chirality transfer was observed, indicating
the reaction procceeds via a SN2 reaction pathway.
Further studies including synthetic applications in our
laboratories are under way and will be reported later.
[3] a) S. Gabriel, M. Cꢅcius, K. Fleury-Frenette, D. Cosse-
ment, M. Hecq, N. Ruth, R. Jꢅrꢆme, C. Jꢅrꢆme, Chem.
Mater. 2007, 19, 2364–2371; b) V. M. Domingo, C.
Aleman, E. Brillas, L. Julia, J. Org. Chem. 2001, 66,
4058–4061; c) P. Novꢇk, K. Mꢃller, K. S. V. Santhanam,
O. Hass, Chem. Rev. 1997, 97, 207–281.
Experimental Section
[4] a) Handbook of Conducting Polymers, 2nd edn., (Eds.:
T. A. Skotheim, R. L. Elsenbaumer, J. R. Reynolds),
Marcel Dekker, New York, 1998; b) Y. Chen, D. X
Zeng, N. Xie, Y. Z. Dang, J. Org. Chem. 2005, 70,
5001–5005.
[5] For reviews see: a) C. Schmuck, D. Rupprecht, Synthe-
sis 2007, 3095–3110; b) G. Balme, Angew. Chem. 2004,
116, 6396–6399; Angew. Chem. Int. Ed. 2004, 43, 6238–
6241; c) A. Padwa, W. H. Pearson, Synthetic Applica-
tions of 1,3-Dipolar Cycloaddition Chemistry Toward
Heterocycles and Natural Products, Wiley, New York,
2002; d) R. J. Sundberg, in: Comprehensive Heterocy-
clic Chemistry, Vol. 2, (Eds.: A. R. Katritzky, C. W.
Rees, E. F. V. Scriven), Pergamon, Oxford, 1996,
pp 119–206; e) V. Cadierno, P. Crochet, Curr. Org.
Synth. 2008, 5, 343–364.
Typical Procedure for the Synthesis of 1-(1-Alkynyl)-
cyclopropyl O-Methyloxime 3a
A solution of (2-furyl)3PAuOTf (2 mol%) generated from
1:1 mol mixture of (2-furyl)3PAuCl/AgOTf in 3 mL DCE
and activated molecular sieves 4 ꢂ (60 mg) were added to
a dry Schlenk tube under argon. After stirring for 0.5 h, O-
methyloxime (E)-1a (86.7 mg, 0.30 mmol) and nitrone 2a
(70.9 mg, 0.36 mmol) were added to the mixture. After
being stirred for another 3 h at room temperature, the reac-
tion was complete as determined by TLC analysis. After fil-
tration and concentration under reduced pressure, the resi-
due was purified by flash column chromatography on silica
gel (hexanes/acetic ether/DCM=50:1:1) to afford the pure
product 3a; yield: 145.0 mg (0.29 mmol, 99%).
[6] a) Y.-J. Bian, X.-Y. Liu, K.-G. Ji, X.-Z. Shu, L.-N. Guo,
Y.-M. Liang, Tetrahedron 2009, 65, 1424–1429; b) D. J.
Gorin, N. R. Davis, F. D. Toste, J. Am. Chem. Soc.
2005, 127, 11260–11261; c) E. Benedetti, G. Lemiꢄre,
L.-L. Chapellet, A. Penoni, G. Palmisano, M. Malacria,
J. P. Goddard, L. Fensterbank, Org. Lett. 2010, 12,
4396–4399; d) A. Saito, T. Konishi, Y. Hanzawa, Org.
Lett. 2010, 12, 372–374; e) G. Minetto, L. F. Raveglia,
A. Sega, M. Taddei, Eur. J. Org. Chem. 2005, 5277–
5288; f) B. K. Banik, I. Banik, M. Renteria, S. K. Das-
gupta, Tetrahedron Lett. 2005, 46, 2643–2645; g) A. R.
Bharadwaj, K. A. Scheidt, Org. Lett. 2004, 6, 2465–
2468; h) G. Minetto, L. F. Raveglia, M. Taddei, Org.
Lett. 2004, 6, 389–392; i) B. K. Banik, S. Samajdar, I.
Banik, J. Org. Chem. 2004, 69, 213–216.
Supporting Information
Experimental details and copies of H/13C NMR spectra of
1
all new compounds are available as Supporting Information.
Acknowledgements
We are grateful to National Natural Science Foundation of
China (20972054), 973 program (2009CB825300), Fok Ying
Tung Education Foundation (121014) and the Program of
Eastern Scholar at Shanghai Institutions of Higher Learning
for financial support.
4
ꢁ 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 0000, 000, 0 – 0
ÝÝ
These are not the final page numbers!