a,b
Scheme 1. Different Pathways for Synthesis of
PhosphineꢀAlkene Ligand
Table 1. Reaction Conditions Screening
c
entry
cat. (mol %)
oxidant (equiv) ligand (mol %) yield (%)
preparation costs. Therefore, the development of concise
and highly efficient methods is still extremely attractive
and a significant challenge. Combining a directing group
with transition-metal-catalyzed direct CꢀH olefination
provides one straightforward and atom-efficient protocol
for the construction of alkeneꢀphosphine hybrid com-
1
2
3
4
5
6
7
8
9
Pd(OAc)
Pd(OAc)
Pd(OAc)
Pd(OAc)
Pd(OAc)
Pd(OAc)
Pd(OAc)
Pd(OAc)
Pd(OAc)
Pd(OAc)
2
2
2
2
2
2
2
2
2
2
2
2
2
2
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
Cu(OAc)
AgOAc (3.0)
AgNO (3.0)
Phl(OAc) (3.0)
Selectfluor (3.0)
2
(3.0)
52
56
44
51
63
42
3
2
K
O
2
S
2
O
8
(3.0)
(1.0 atm)
(3.0) L-Ac-Leu-OH (20) 74
2
n. r.
4
,5
Cu(OAc)
AgOAc (3.0)
AgNO (3.0)
Phl(OAc)
Selectfluor (3.0) L-Ac-Leu-OH (20) 43
(3.0) L-Ac-Leu-OH (20) 44
2
pounds. Over the past several years, we have trained our
focus on the development of new and efficient protocols
L-Ac-Leu-OH (20) 83
L-Ac-Leu-OH (20) 61
10
3
6
for the transition metal-catalyzed CꢀP bond formation.
11 Pd(OAc)
2
(3.0) L-Ac-Leu-OH (20) 53
1
1
1
2
3
4
Pd(OAc)
Pd(OAc)
Pd(OAc)
Herein, by using the P(O)Ph as a new directing group, we
2
2 2 8
K S O
first disclose a novel protocol of palladium-catalyzed CꢀH
olefination to synthesize a series of alkeneꢀphosphine
hybrid compounds (Scheme 1). In contrast to the former
reports that involve Pd(II)- and Rh(III)-catalyzed phos-
AgOAc (3.0)
AgOAc (3.0)
AgOAc (3.0)
AgOAc (3.0)
AgOAc (3.0)
AgOAc (3.0)
AgOAc (3.0)
AgOAc (3.0)
AgOAc (3.0)
AgOAc (3.0)
AgOAc (3.0)
(10) AgOAc (3.0)
Bipy (20)
nr
nr
78
85
76
70
30
nr
78
63
76
75
78
87
77
71
15 Pd(OAc) (10)
16 Pd(OAc)
2
1,10-Phen (20)
L-Ac-Ala-OH (20)
Ac-Gly-OH (20)
L-Ac-Val-OH (20)
L-Ac-lle-OH (20)
2
2
2
2
(10)
(10)
(10)
(10)
17
18
19
Pd(OAc)
Pd(OAc)
Pd(OAc)
phorous acid or phosphate ester directed CꢀH func-
7
tionalizations, diphenylphosphine oxide (P(O)Ph ) not
2
20 Pd(OAc) (10)
2
PPh (20)
3
21
22
23
24
Pd(OAc)
PdCl (10)
Pd(PPh
Pd(TFA)
2
(10)
dppe (20)
only acts as the directing group to direct CꢀH activation
to make a useful ligand but also incorporates broadly
useful ligands in the reactions.
2
Ac-Gly-OH (20)
Ac-Gly-OH (200
Ac-Gly-OH (20)
Ac-Gly-OH (20)
Ac-Gly-OH (20)
Ac-Gly-OH (10)
Ac-Gly-OH (5)
Ac-Gly-OH (10)
Ac-Gly-OH (10)
3
)
4
(10)
(10)
2
We began our exploration with 2-diphenylphosphino-
-methylbiphenyl (1a) and ethyl acrylate as the model
2 2
25 Pd(PhCN) Cl
0
26 Pd(PPh ) Cl (10) AgOAc (3.0)
2
3 2
2
27
28
29
Pd(OAc)
Pd(OAc)
Pd(OAc)
2
(5)
AgOAc (3.0)
AgOAc (3.0)
AgOAc (2.0)
AgOAc (3.0)
substrates with which to identify suitable reaction con-
ditions (Table 1). First, we evaluated various oxidants in
the presence of Pd(OAc) (10 mol %) as a catalyst in
2
2
2
(2.5)
(5)
(5)
d
30 Pd(OAc)
76
2
a
All reactions were carried out in the presence of 0.2 mmol of 1a
(5) For leading references of various directing groups oriented CꢀH
olefination, see: (a) Wasa, M.; Engle, K. M.; Yu, J.-Q. J. Am. Chem. Soc.
b
in 2.0 mL of different solvents at 100 °C under air atmosphere. 1,
0
1
2
0-Phen =1, 10-phenanthrline, Bipy =2, 2 -bipyridine, dppe = 1,
2010, 132, 3680. (b) Patureau, F. W.; Glorius, F. J. Am. Chem. Soc. 2010,
c
-bis(diphenylphosphino)ethane. Yield of isolated product. Reaction
d
1
32, 9982. (c) Huang, C.; Chattopadhyay, B.; Gevorgyan, V. J. Am.
temperature: 110 °C.
Chem. Soc. 2011, 133, 12406. (d) Patureau, F. W.; Besset, T.; Glorius, F.
Angew. Chem., Int. Ed. 2011, 50, 1064. (e) Rakshit, S.; Grohmann, C.;
Besset, T.; Glorius, F. J. Am. Chem. Soc. 2011, 133, 2350. (f) Gong, T.-J.;
Xiao, B.; Liu, Z.-J.; Wan, J.; Xu, J.; Luo, D.-F.; Fu, Y.; Liu, L. Org. Lett.
CF CH OH at 100 °C. To our delight, the use of Cu(OAc) ,
3
2
2
2
011, 13, 3235. (g) Li, H.; Li, Y.; Zhang, X.-S.; Chen, K.; Wang, X.; Shi,
Z.-J. J. Am. Chem. Soc. 2011, 133, 15244. (h) Zhao, P.; Niu, R.; Wang,
F.; Han, K.; Li, X. Org. Lett. 2012, 14, 4166. (i) Leow, D.; Li, G.; Mei,
T.-S.; Yu, J.-Q. Nature 2012, 486, 518. (j) Zhao, P.; Wang, F.; Han, K.;
Li, X. Org. Lett. 2012, 14, 3400. (k) Baxter, R. D.; Sale, D.; Engle, K. M.;
Yu, J.-Q.; Blackmond, D. G. J. Am. Chem. Soc. 2012, 134, 4600. (l)
Wang, C.; Chen, H.; Wang, Z.; Chen, J.; Huang, Y. Angew. Chem., Int.
Ed. 2012, 51, 7242. (m) Shen, Y.; Liu, G.; Zhou, Z.; Lu, X. Org. Lett.
AgOAc, AgNO , K S O , PhI(OAc) , and Selectfluor as
3 2 2 8 2
oxidants yielded the desired product of 2a; AgOAc was
most effective (entries 1ꢀ6, Table 1). Notably, the reaction
failed with oxygen as the oxidant (entry 7, Table 1).
Furthermore, the control experiment showed that the
palladium as catalyst is necessary to the success of the
transformation. Results of solvents screening indicated
2
013, 15, 3366. (n) Brasse, M.; C ꢀa mpora, J.; Ellman, J. A.; Bergman,
R. G. J. Am. Chem. Soc. 2013, 135, 6427. (o) Dai, H.-X.; Li, G.; Zhang,
X.-G.; Stepan, A. F.; Yu, J.-Q. J. Am. Chem. Soc. 2013, 135, 7567.
that CF CH OH was still the best choice. Recently, in
2
(6) (a) Li, Y.-M.; Sun, M.; Wang, H.-L.; Tian, Q.-P.; Yang, S.-D.
3
Angew. Chem., Int. Ed. 2013, 52, 3972. (b) Zhang, H.-Y.; Sun, M.; Ma,
Y.-N.; Tian, Q.-P.; Yang, S.-D. Org. Biomol. Chem. 2012, 10, 9627. (c)
Sun, M.; Zhang, H.-Y.; Han, Q.; Yang, K.; Yang, S.-D. Chem.;Eur. J.
the field of Pd(II)-catalyzed carboxylate-directed CꢀH
olefination reactions, Yu and co-workers reported a highly
significant discovery: the addition of mono-N-protected
2
011, 17, 9566. (d) Hu, J.; Zhao, N.; Yang, B.; Wang, G.; Guo, L.-N.;
Liang, Y.-M.; Yang, S.-D. Chem.;Eur. J. 2011, 17, 5516.
7) (a) Meng, X.; Kim, S. Org. Lett. 2013, 15, 1910. (b) Chan, L. Y.;
(
Kim, S.; Ryu, T.; Lee, P. H. Chem. Commun. 2013, 49, 4682. (c) Chan, L.;
Cheong, L.; Kim, S. Org. Lett. 2013, 15, 2186. (d) Seo, J.; Park, Y.; Jeon,
I.; Ryu, T.; Park, S.; Lee, P. H. Org. Lett. 2013, 15, 3358. (e) Chary, B. C.;
Kim, S.; Park, Y.; Kim, J.; Lee, P. H. Org. Lett. 2013, 15, 2692. (f) Unoh,
Y.; Hashimoto, Y.; Takeda, D.; Hirano, K.; Satoh, T.; Miura, M. Org.
Lett. 2013, 15, 3258. (g) Zhao, D.; Nimphius, C.; Lindale, M.; Glorius,
F. Org. Lett. 2013, 15, 4504.
(8) (a) Wang, D.-H.; Engle, K. M.; Shi, B.-F.; Yu, J.-Q. Science 2010,
327, 315. (b) Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int.
Ed. 2010, 49, 6169. (c) Lu, Y.; Leow, D.; Wang, X.; Engle, K. M.; Yu,
J.-Q. Chem. Sci. 2011, 2, 967. (d) Engle, K. M.; Thuy-Boun, P. S.; Dang,
M.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 18183. (e) Engle, K. M.; Mei,
T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2012, 45, 788. (f) Li, G.;
Leow, D.; Wan, L.; Yu, J.-Q. Angew. Chem., Int. Ed. 2013, 52, 1245.
B
Org. Lett., Vol. XX, No. XX, XXXX