Paper
RSC Advances
In the supramolecular assembly of complex 2, the halogen
1157; (b) A. C. Legon, Angew. Chem., 1999, 111, 2850–2880;
(c) A. C. Legon, Chem.–Eur. J., 1998, 4, 1890–1897.
bonding is established between the Cl atom and one O atom of
+
the VO2 moiety, which is a better electron donor compared to
5 (a)
A.
M.
Maharramova,
N.
Q.
Shikhaliyeva,
the p-system. A dimer, retrieved from the innite chain, has
G. T. Suleymanovaa, A. V. Gurbanova, G. V. Babayevaa,
G. Z. Mammadovaa, F. I. Zubkovc, V. G. Nenajdenkod,
K. T. Mahmudov and A. J. L. Pombeiro, Dyes Pigm., 2018,
159, 135–141; (b) D. Franchinia, F. Dapiaggia,
S. Pieraccinia, A. Fornib and M. Sironi, Chem. Phys. Lett.,
2018, 712, 89–94; (c) J. M. Guevara-Vela, D. Ochoa-
Resendiz, A. Costales, R. Hern ´a ndez-Lamoneda and
A. M. Pend ´a s, ChemPhysChem, 2018, 19, 2512–2517.
6 (a) L. Brunsveld, J. A. J. M. Vekemans, J. H. K. K. Hirschberg,
R. P. Sijbesma and E. W. Meijer, Proc. Natl. Acad. Sci. U. S. A.,
2002, 99, 4977–4982; (b) C. M. A. Leenders, L. Albertazzi,
T. Mes, M. M. E. Koenigs, A. R. A. Palmans and
E. W. Meijer, Chem. Commun., 2013, 49, 1963–1965; (c)
M. Henry, ChemPhysChem, 2002, 3, 607–616; (d)
C. Schmuck and W. Wienand, Angew. Chem., Int. Ed., 2001,
40, 4363–4369; (e) F. Wang, M. A. J. Gillissen, P. J. M. Stals,
A. R. A. Palmans and E. W. Meijer, Chem.–Eur. J., 2012, 18,
been computed and the formation energy is similar to that
ꢀ1
computed for complex 1 (DE
2
¼ ꢀ4.6 kcal mol ), which is likely
due to a compensating effect (worse s-hole donor and better s-
hole acceptor compared to complex 1). Complex 3 has a chlo-
rine atom in the ligand part; however, it does not participate in
halogen bonding interactions. Instead, it establishes several C–
H/Cl interactions. In fact, its solid state structure shows that
each dinuclear complex establishes four sets of C–H/Cl
interactions: two as donor and two as acceptors, generating
a two dimensional sheet. The interaction energy of the
ꢀ
1
hydrogen bonded dimer is modest, DE
3
¼ ꢀ3.7 kcal mol and
smaller than the halogen bonding computed for 1 and 2, thus
suggesting that the halogen bond is favoured in these vanadium
systems. All these results were further corroborated with the
molecular electrostatic potential (MEP) surface calculation and
NCI plot index computational tool.
11761–11770; (f) T. Kato, N. Mizoshita and K. Kanie,
Macromol. Rapid Commun., 2001, 22, 797–814; (g)
C. M. Paleos and D. Tsiourvas, Liq. Cryst., 2001, 28, 1127–
1161; (h) F. C. Gozzo, L. S. Santos, R. Augusti,
C. S. Consorti, J. Dupont and M. N. Eberlin, Chem.–Eur. J.,
Conflicts of interest
There are no conicts of interest to declare.
2004, 10, 6187–6193.
Acknowledgements
7
(a) P. Metrangolo and G. Resnati, Chem.–Eur. J., 2001, 7,
2511–2519; (b) E. Corradi, S. V. Meille, M. T. Messina and
G. Resnati, Angew. Chem., Int. Ed., 2000, 39, 1782–1786; (c)
C. B. Aaker ¨o y, M. Fasulo, N. Schultheiss, J. Desper and
C. Moore, J. Am. Chem. Soc., 2007, 129, 13772–13773; (d)
G. C. Cole, A. C. Legon and P. Ottaviani, J. Chem. Phys.,
2002, 117, 2790.
8 (a) S. Thakur, S. Roy, A. Bauz ´a , A. Frontera and
S. Chattopadhyay, Inorg. Chim. Acta, 2017, 467, 212–220; (b)
S. Thakur, N. Sarkar, M. G. B. Drew, A. Bauz ´a , A. Frontera
and S. Chattopadhyay, Polyhedron, 2018, 142, 83–92.
S. T. thanks the DST, India, for awarding a Junior Research
Fellowship (IF160359). A. Frontera and A. Franconetti gratefully
acknowledge the nancial support of this work by the MINECO
of Spain (project CTQ2017-85821-R, FEDER funds). In addition,
AF thanks the MINECO/AEI from Spain for a “Juan de la Cierva”
contract. They thank the CTI (UIB) for free allocation of
computer time. M. G. B. D. thanks the University of Reading and
the EPSRC (U. K.) for funds for the diffractometer.
Notes and references
9
(a) G. M. Sheldrick, Acta Crystallogr., Sect. A: Found.
Crystallogr., 2008, 64, 112–122; (b) G. M. Sheldrick, Acta
Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3–8.
1
(a) J. P. M. Lommerse, A. J. Stone, R. Taylor and F. H. Allen, J.
Am. Chem. Soc., 1996, 118, 3108–3116; (b) P. Politzer, P. Lane,
M. C. Concha, Y. Ma and J. S. Murray, J. Mol. Model., 2007, 13, 10 A. L. Spek, Acta Crystallogr., 2009, D65, 148–155.
05–311; (c) P. Metrangolo, F. Meyer, T. Pilati, G. Resnati and 11 J. L. Farrugia, J. Appl. Crystallogr., 2012, 45, 849–854.
G. Terraneo, Angew. Chem., Int. Ed., 2008, 47, 6114–6127; (d) 12 M. N. Burnett and C. K. Johnson, ORTEP-3: Oak Ridge
3
P. Politzer, J. S. Murray and M. C. Concha, J. Mol. Model.,
007, 13, 643–650; (e) P. Politzer, J. S. Murray and T. Clark,
Phys. Chem. Chem. Phys., 2010, 12, 7748–7757.
Thermal Ellipsoid Plot Program for Crystal Structure
Illustrations, Report ORNL-6895, Oak Ridge National
Laboratory, Oak Ridge, TN, USA, 1996.
2
2
(a) A. Farina, S. V. Meille, M. T. Messina, P. Metrangolo, 13 C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington,
G. Resnati and G. Vecchio, Angew. Chem., Int. Ed., 1999, 38,
433–2436; (b) T. Caronna, R. Liantonio, T. A. Logothetis,
P. Metrangolo, T. Pilati and G. Resnati, J. Am. Chem. Soc.,
004, 126, 4500–4501.
(a) M. T. Messina, P. Metrangolo, W. Panzeri, E. Ragg and
G. Resnati, Tetrahedron Lett., 1998, 39, 9069–9072; (b)
H. L. Nguyen, P. N. Horton, M. B. Hursthouse, A. C. Legon
and D. W. Bruce, J. Am. Chem. Soc., 2004, 126, 16–17.
P. McCabe, E. Pidcock, L. R. Monge, R. Taylor,
J. V. D. Streek and P. A. Wood, J. Appl. Crystallogr., 2008,
41, 466–470.
2
2
14 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone,
B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato,
X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng,
J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr,
3
4
(a) O. Dumele, B. Schreib, U. Warzok, N. Trapp, C. A. Schalley
and F. Diederich, Angew. Chem., Int. Ed., 2017, 56, 1152–
This journal is © The Royal Society of Chemistry 2019
RSC Adv., 2019, 9, 4789–4796 | 4795