I.-H. Um et al.
ꢀ
ment of the intermediate T due to its instability in the
aprotic solvent.
Acknowledgements
The authors are grateful for the financial support from the Korea Re-
search Foundation (KRF-2002–070-C00061).
Conclusion
Kinetic studies on the aminolyses of 2,4-dinitrophenyl
X-substituted benzoates (1a–f) and Y-substituted phenyl
benzoates (2a–h) have allowed us to conclude the follow-
ing:
[1] a) W. P. Jencks, Chem. Rev. 1985, 85, 511–527; b) W. P. Jencks,
Chem. Soc. Rev. 1981, 10, 345–375; c) D. J. Hupe, W. P. Jencks, J.
Am. Chem. Soc. 1977, 99, 451–464.
[
2] a) E. A. Castro, Chem. Rev. 1999, 99, 3505–3524; b) E. A. Castro,
M. Cubillos, M. Aliaga, S. Evangelisti, J. G. Santos, J. Org. Chem.
2
004, 69, 2411–2416; c) E. A. Castro, J. Bessolo, R. Aguayo, J. G.
1
2
3
) The Yukawa–Tsuno plots for the reactions of 1a–f exhib-
it good linearity, indicating that the electronic nature of
the substituent X does not affect the reaction mecha-
nism.
Santos, J. Org. Chem. 2003, 68, 8157–8161; d) E. A. Castro, M. An-
dujar, A. Toro, J. G. Santos, J. Org. Chem. 2003, 68, 3608–3613;
e) E. A. Castro, M. Aliaga, P. Campodonico, J. G. Santos, J. Org.
Chem. 2002, 67, 8911–8916.
3] a) I. Lee, D. D. Sung, Curr. Org. Chem. 2004, 8, 557–567; b) H. K.
Oh, I. K. Kim, H. W. Lee, I. Lee, J. Org. Chem. 2004, 69, 3806–
3810; c) H. K. Oh, J. E. Park, D. D. Sung, I. Lee, J. Org. Chem. 2004,
[
ꢁ
) The fact that s constants result in good Hammett corre-
lation with a 1Y value of 3.54 for the reactions of 2a–h,
suggests that the leaving-group departure occurs at the
rate-determining step.
) A bnuc value of 0.40 for the aminolysis of 1c suggests
that bond formation between the carbonyl carbon of 1c
and the attacking amine is little advanced in the transi-
tion state.
6
9, 3150–3153; d) H. K. Oh, J. M. Lee, D. D. Sung, I. Lee, Bull.
KoreanChem. Soc. 2004, 25, 557–559; e) H. J. Koh, S. J. Kang, C. J.
Kim, H. W. Lee, I. Lee, Bull. KoreanChem. Soc. 2003, 24, 925–930.
[4] a) F. M. Menger, J. H. Smith, J. Am. Chem. Soc. 1972, 94, 3824–
3829; b) A. B. Maude, A. Williams, J. Chem. Soc. PerkinTra ns . 2
1
995, 691–696; c) A. B. Maude, A. Williams, J. Chem. Soc. Perkin
Trans. 2 1997, 179–183; d) F. M. Menger, J. Bian, V. A. Azov,
Angew. Chem. Int. Ed. 2002, 41, 2581–2584; e) L. Perreux, A.
Loupy, M. Delmotte, Tetrahedron 2003, 59, 2185–2189; f) T. H. Fife,
L. Chauffe, J. Org. Chem. 2000, 65, 3579–3586; g) W. J. Spillane, C.
Brack, J. Chem. Soc. PerkinTra ns . 2 1998, 2381–2384; h) A. Llinas,
M. I. Page, Org. Biomol. Chem. 2004, 2, 651–654.
4) Amines are slightly more reactive in MeCN than in H O,
2
although they are approximately 8 pK units more basic
a
in the aprotic solvent than in H O.
2
5) The aminolysis of 1a–f proceeds concertedly through TS1
[
5] a) I. H. Um, J. S. Min, H. W. Lee, Can. J. Chem. 1999, 77, 659–666;
b) I. H. Um, J. S. Min, J. A. Ahn, H. J. Hahn, J. Org. Chem. 2000, 65,
in MeCN. The medium change from H O to MeCN ap-
2
pears to force the reaction to proceed concertedly by de-
creasing the stability of the zwitterionic tetrahedral inter-
5
659–5663; c) I. H. Um, K. H. Kim, H. R. Park, M. Fujio, Y. Tsuno,
J. Org. Chem. 2004, 69, 3937–3942; d) I. H. Um, H. R. Park, E. Y.
Kim, Bull. KoreanChem. Soc. 2003, 24, 1251–1255.
6] a) I. H. Um, J. Y. Hong, J. J. Kim, O. M. Chae, S. K. Bae, J. Org.
Chem. 2003, 68, 5180–5185; b) I. H. Um, S. M. Chun, O. M. Chae,
M. Fujio, Y. Tsuno, J. Org. Chem. 2004, 69, 3166–3172.
ꢀ
mediate (T ) in aprotic solvent.
[
[
7] a) E. A. Casto, A. Galvez, L. Leandro, J. G. Santos, J. Org. Chem.
2
002, 67, 4309–4315; b) E. A. Castro, M. Angel, D. Arellano, J. G.
Santos, J. Org. Chem. 2001, 66, 6571–6575; c) E. A. Castro, L. Lean-
dro, N. Quesieh, J. G. Santos, J. Org. Chem. 2001, 66, 6130–6135;
d) E. A. Castro, P. Garcia, L. Leandro, N. Quesieh, A. Rebolledo,
J. G. Santos, J. Org. Chem. 2000, 65, 9047–9053.
Experimental Section
Materials: Compounds 1a–f and 2a–h were readily prepared from the re-
action of X-substituted benzoyl chloride with Y-substituted phenol in the
presence of triethylamine in anhydrous ether as previously reported.
[
8] a) H. K. Oh, J. M. Lee, H. W. Lee, I. Lee, Int. J. Chem. Kinet. 2004,
[
4a,5]
3
6, 434–440; b) H. K. Oh, M. H. Ku, H. W. Lee, I. Lee, J. Org.
The purity of these compounds was checked by means of melting point
Chem. 2002, 67, 8995–8998; c) H. K. Oh, M. H. Ku, H. W. Lee, I.
Lee, J. Org. Chem. 2002, 67, 3874–3877.
9] a) I. H. Um, H. J. Han, M. H. Baek, S. Y. Bae, J. Org. Chem. 2004,
1
and spectral data, such as H NMR and IR spectra. MeCN was distilled
over phosphorus pentaoxide under nitrogen. Amines and other chemicals
were of the highest quality available.
[
6
9, 6365–6370; b) I. H. Um, J. A. Seok, H. T. Kim, S. K. Bae, J. Org.
Kinetics: The kinetic study was performed by using a Scinco S-3150 PDA
UV-vis spectrophotometer for slow reactions (t1/2 ꢃ10 s) or an Applied
Photophysics SX-17 MV stopped-flow spectrophotometer for fast reac-
tions (t1/2 <10 s); both spectrophotometers were equipped with a Neslab
RTE-110 constant temperature circulating bath to keep the reaction tem-
perature at 25.0ꢀ0.18C. All the reactions were carried out under
pseudo-first-order conditions in which the amine concentration was at
least 20 times greater than the substrate concentration. Solutions were
transferred by using Hamilton gas-tight syringes under nitrogen. The re-
actions were followed by monitoring the aryloxide produced in the reac-
Chem. 2003, 68, 7742–7746; c) I. H. Um, S. E. Lee, H. J. Kwon, J.
Org. Chem. 2002, 67, 8999–9005; d) I. H. Um, H. J. Kwon, D. S.
Kwon, J. Chem. Res. Synop. 1995, 301.
[
[
10] a) E. A. Castro, C. L. Santander, J. Org. Chem. 1985, 50, 3595–3600;
b) E. A. Castro, J. L. Valdivia, J. Org. Chem. 1986, 51, 1668–1672;
c) E. A. Castro, G. B. Steinfort, J. Chem. Soc. PerkinTra ns . 2 1983,
4
53–457.
11] E. A. Castro, M. Vivanco, R. Aguayo, J. G. Santos, J. Org. Chem.
004, 69, 5399–5404.
2
[
[
12] M. J. Gresser, W. P. Jencks, J. Am. Chem. Soc. 1977, 99, 6963–6970.
13] I. H. Um, H. J. Han, J. A. Ahn, S. Kang, E. Buncel, J. Org. Chem.
tion at a fixed wavelength, corresponding to the maximum absorption of
ꢁ
Y-C
reported.
Product Analysis: Y-substituted phenoxide (Y-C
6
H
4
O
(lmax). Other detailed kinetic methods have been previously
2
002, 67, 8475–8480.
[
5a–c]
[
14] I. H. Um, J. Y. Lee, H. T. Kim, S. K. Bae, J. Org. Chem. 2004, 69,
ꢁ
6
H
4
O ) was liberated
2436–2441.
quantitatively and identified as one of the reaction products by compari-
son of the UV-vis spectra after completion of the reactions with those of
authentic samples under the same kinetic conditions.
[15] a) W. P. Jencks, Catalysis in Chemistry and Enzymology, McGraw-
Hill, New York, 1969, pp 480–483; b) S. Swansburg, E. Buncel, R. P.
Lemieux, J. Am. Chem. Soc. 2000, 122, 6594–6600.
1242
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2006, 12, 1237 – 1243