10.1002/chem.201703084
Chemistry - A European Journal
FULL PAPER
rings. The key conceptual renovation is to pre-form the first
strand of diene and use it as the template to direct the synthesis
of the second diene strand. In practice, the first strand of diene
was constructed with Wittig-Horner reaction while the second
strand is accomplished with Knoevenagel condensation.
Combining the template approach with the bidirectional growth
strategy, we successfully conducted three-fold and four-fold
cyclization reactions to furnish tetracene and pentacene
derivatives in moderate to good yields (20-50 % over 7 steps from
[8] (a) A. Afzali; C. Dimitrakopoulos; T. Breen. J. Am. Chem. Soc. 2002
124, 8812-8813; (b) K.-Y. Chen; H.-H. Hsieh; C.-C. Wu; J.-J. Hwang;
T.-J. Chow. Chem. Commun. 2007, 1065-1067; (c) H. Yamada; Y.
Yamashita; M. Kikuchi; H. Watanabe; T. Okujima; H. Uno; T. Ogawa; K.
Ohara; N. Ono. Chem. Eur. J. 2005, 11, 6212-6220.
,
[9] (a) K. N. Houk; P. S. Lee; M. Nedel. J. Org. Chem. 2001, 66, 5517-5521;
(b) M. Bendikov; H. M. Duong; K. Starkey; K. N. Houk; E. A. Carter; F.
Wudl. J. Am. Chem. Soc. 2004, 126, 7416-7417.
[10] W. F. K. Schnatter; O. Almarson; T. C. Bruice. Tetrahedron, 1991, 47,
8687-8700.
readily available compounds).
Unsymmetrically substituted
pentacene and tetracene derivatives with ester, nitrile, and imide
substituents are also accessible through this strategy. Moreover,
the capacity of the template strategy was showcased in the
synthesis of amphiphilic acene derivative with oligo ethylene
glycol ester and alkyl imide substituents at both ends of the
molecules. One of these amphiphilic pentacene derivatives 30a
forms helical wire assemblies in aqueous/THF medium. This
strategy should prove particularly handy when screening the
physical properties of a series of compounds. It should also be
applicable to the synthesis of higher acene and related polycyclic
aromatic systems.
[11] (a) W. Nagata; Y. Hayase. J. Chem. Soc. C. 1969, 460-466; (b) W.
Nagata; Y. Hayase. Tetrahedron Lett. 1968, 9, 4359-4362; (c) B. Iorga;
F. Eymery; V. Mouries; P. Savignac. Tetrahedron, 1998, 54, 14637-
14677.
[12] R. K. Boeckman; M. A. Walter; H. Koyano. Tetrahedron Lett. 1989, 30,
4787-4790.
[13] (a) S. W. McCombie, C. A. Luchaco. Tetrahedron Lett. 1997, 38, 5775-
5776; (b) V. K. Outlaw; C. A. Townsend. Org. Lett. 2014, 16, 6334-6337.
[14] Z. Xie; B. Yang; L. Liu; M. Li; D. Lin; Y. Ma; G. Cheng; S. Liu. J. Phys.
Org. Chem. 2005, 18, 962-973.
[15] N,N-didodecyl pentacene 2,3,9,10-diimide was synthesized via
photoprecursor. It is practically insoluble in all common organic
solvents at room temperature. B. Pal. unpublished results.
[16] C. V. Yelamaggead; A. S. Achalkumar; D. S. Shankar Rao; S. Krishna
Prasad. J. Org. Chem. 2007, 72, 8308-8318.
Acknowledgements
This work was supported by Academia Sinica and National Science
Council of Taiwan.
[17] C. Tönshoff; H. F. Bettinger. Chem. Eur. J., 2012, 1
8, 1789-1799.
[18] (a) J.-H. Ryu; D.-J. Hong; M. Lee Chem. Commun., 2008, 1043-1054;
.
(b) Z. Chen; A. Lohr; C. R. Saha-Möller; F. Würthner. Chem. Soc.
Rev. 2009, 38, 564-584; (c) F. J. M. Hoeben; P. Jonkheijim; E. W.
Meijer; P. H. J. Schenning Albertus. Chem. Rev. 2005, 105, 1491-
1546. (d) A, Ajayaghosh; V. K. Preevan. Acc. Chem. Res. 2007, 40,
644-656
Keywords: Pentacene. Tetracene. Template Synthesis.
Annulenes. Self-assembly
[1] (a) C. D. Dimitrakopoulos; P. R. L. Malenfant. Adv. Mater. 2002, 14, 99-
117; (b) H. Sasabe; J. Kido. J. Mater. Chem. C. 2013,
1
,
1699-1707; (c)
[19] S. Chen; P, Slattum; C. Wang; L, Zang. Chem. Rev. 2015, 115, 11967-
11998.
A. Mishra; M. K. R. Fischer; P. Bäuerle. Angew. Chem., Int. Ed., 2009
48, 2474-2499; Angew. Chem. 2009, 121, 2510-2536.
,
[20] A. Yassar. Polymer Sci. Series C. 2014, 56, 4-19
[2] (a) S. F. Nelson; Y.-Y. Lin; D. J. Gundlach; T. N. Jackson. Appl. Phys.
Lett., 1998, 72 1854-1856; (b) O. D. J. Baas; T. T. M. Palstra. Appl.
Phys. Lett. 2004, 84 3061-3063; (c) J. E. Anthony. Angew Chem. Int.
Ed. 2008, 47, 452-483; Angew. Chem. 2008, 120, 460-492.
[3] (a) L. Chen; C. Li; K. Mullen. J. Mater. Chem. C. 2014, 2, 1938-1956;
(b) J. T. Siegel; Y. T. Ed. Wu. Polyarene II, Topics in Current Chemistry,
2014, 350, Springer, New York.
[21]] (a) J. Reichwagen; H. Hopf; A. Del Guerzo; C. Belin; H. Bouas-Laurent;
J.-P. Desvergne. Org. Lett. 2005, 7, 971-974; (b) J. Reichwagen; H.
Hopf; J.-P. Desvergne; A. Del Guerzo; H. Bouas-Laurent. Synthesis,
2005, 20, 3505-3507; (c) A. D. Guerzo; G. L. Olive, Alexandre; J.
Reichwagen; H. Hopf; J.-P. Desvergne. J. Am. Chem. Soc. 2005, 127,
17984-17985; (d) T. Brotin; R. Utermöhlen; F. Fages; H. Bouas-Laurent;
J.-P. Desvergne. J. Chem. Soc. Chem. Commun. 1991, 416-418.
[22] (a) J. P. Hill; W. Jin; A. Kosaka; T. Fukushima; H. Ichihara; T.
,
,
[4] (a) Y.-L. Chen; C.-K. Hau; H. Wang; H. He; M.-S. Wong; Albert W. M.
Lee. J. Org. Chem., 2006, 71, 3512-3517; (b) R. J. Graham; L. A.
Paquette. J. Org. Chem. 1995, 60, 6912-6921.
Shimomura; K. Ito; T. Hashizume; N. Ishii; T. Aida. Science, 2004
304, 1481-1483; (b) W. Jin; T. Fukushima; A. Kosaka; M. Niki; N.
Ishii; T. Aida. J. Am. Chem. Soc. 2005 127, 8284-8285; (c) Y.
,
[5] (a) J. E. Anthony; D. L. Eaton; S. R. Parkin. Org. Lett. 2002, 4, 15-18;
,
(b) M. M. Payne; S. R. Parkin; J. E. Anthony. J. Am. Chem. Soc. 2005
,
Yamamoto; T. Fukushima; Y. Suna; N. Ishii; A. Saeki; S. Seki; S.
Tagawa; M. Taniguchi; T. Kawai; T. Aida. Science, 2006, 314, 1761-
1764.
127, 8028-8029; (c) C. R. Swartz; S. R. Parkin; J. E. Bullock; J. E.
Anthony; A. Mayer; G. Malliaras. Org. Lett. 2005, 7, 3163-3166; (d) M.
M. Payne; J. H. Delcamp; S. R. Parkin; J. E. Anthony. Org. Lett. 2004
,
6, 1609-1612; e) M. J. Bruzek; J. E. Anthony. Org. Lett. 2014, 1 , 3608-
6
3610; f) M. L. Tang; A. D. Reichardt; P. Wei; Z. Bao. J. Am. Chem. Soc.
2009, 131, 5264-5273; g) J. Reichwagen; H. Hopf; A. D. Guerzo; J.-P.
Desvergne; H. Bouas-Laurent. Org. Lett. 2004, 6, 1899-1902; h) L.
Liang; J. T. Engle; R. A. Zaenglein; A. Matus; C. J. Ziegler; H. Wang; M.
J. Stillman. Chem. Eur. J. 2014, 20, 13865-13870.
[6] (a) T. Takahashi; S. Li; W. Huang; F, Kong; K. Nakajima; B. Shen; T,
Ohe; K. Kanno. J. Org. Chem. 2006, 71, 7967-7977; (b) S. Li; Z. Li; K.
Nakajima; K. Kanno; T. Takahashi. Chem. Asian J. 2009, 4, 294-301;
(c) L. Zhou; K. Nakajima; K. Kanno; T. Takahashi. Tetrahedron Lett.
2009, 50, 2722-2726; (d) T. Takahashi; M. Kitamura; B. Shen; K.
Nakajima. J. Am. Chem. Soc. 2000, 122, 12876-12877.
[7] (a) K.-L. Lin; B. Pal; L.-D.Tsou. C.-H. Lin. Chem. Commun. 2009, 803-
805; (b) D.-T. Hsu; C.-H. Lin. J. Org. Chem. 2009, 74, 9180-9187; (c)
Y.-C. Lin; C.-H. Lin; C.-Y. Chen; S.-S. Sun; B. Pal. Org. Biomol. Chem.
2011, 9, 4507-4517; (d) B. Pal; B.-C. Lin; M. V. dela Cerna; C.-P. Hsu;
C.-H. Lin. J. Org. Chem. 2016, 81, 6223-6234.
This article is protected by copyright. All rights reserved.