Communication
ChemComm
Notes and references
1 M. P. Kalapos, Toxicol. Lett., 1999, 110, 145–175.
2 N. Rabbani and P. J. Thornalley, Amino Acids, 2012, 42,
1133–1142.
3 P. J. Thornalley, Gen. Pharmacol., 1996, 27, 565–573.
4 R. Singh, A. Barden, T. Mori and L. Beilin, Diabetologia, 2001, 44,
129–146.
5 D. Yao, T. Taguchi, T. Matsumura, R. Pestell, D. Edelstein,
I. Giardino, G. Suske, N. Rabbani, P. J. Thornalley, V. P. Sarthy,
H.-P. Hammes and M. Brownlee, J. Biol. Chem., 2007, 282,
31038–31045.
6 H. Wang, Q. H. Meng, J. R. Gordon, H. Khandwala and L. Wu,
Clin. Biochem., 2007, 40, 1232–1239.
Fig. 4 Fluorescence intensities at 564 nm of NAP-DCP-4 in the super-
natant of RAW264.7 cells in normal or hypoxia microenvironments stimu-
lated with LPS for 0, 2, 4, 8, 12, and 24 h: (a) lex = 425 nm; (b) lex = 365 nm.
7 B. Vulesevic, B. McNeill, F. Giacco, K. Maeda, N. J. R. Blackburn,
M. Brownlee, R. W. Milne and E. J. Suuronen, Diabetes, 2016, 65,
1699–1713.
8 C. Tikellis, R. J. Pickering, D. Tsorotes, O. Huet, M. E. Cooper,
K. Jandeleit-Dahm and M. C. Thomas, Diabetes, 2014, 63,
3915–3925.
9 L. Wu and B. H. J. Juurlink, Hypertension, 2002, 39, 809–814.
10 N. Shangari, W. R. Bruce, R. Poon and P. J. O’Brien, Biochem. Soc.
Trans., 2003, 31, 1390–1393.
upon LPS activation when excited at 365 nm, although it was not
reversible upon addition of NAC (Fig. 3c and d). The above studies
confirmed that the probe can be used to monitor the increase of
supernatant MGO levels of macrophages upon activation.
We continued to study the probe’s use for the monitoring of
the supernatant MGO level changes of activated RAW264.7 cells
under hypoxia conditions induced by CoCl2.30 Time-dependent
fluorescence intensity increases upon LPS stimulation were
observed when excited with either 425 nm (Fig. 4a) or 365 nm
(Fig. 4b) light. Upon addition of NAC, the fluorescence intensity
increase remained almost unchanged when excited at 365 nm
(Fig. 4b) in contrast to the fluorescence intensity dropping to low
background values when excited at 425 nm (the blue curve in
Fig. 4a), which confirmed MGO detection. It was also found that
the fluorescence intensities measured were higher under hypoxia
conditions at each time point, suggesting higher excreted MGO
levels at hypoxia conditions due to further increased glycolysis for
energy consumption. It was possible that the fluorescence inten-
sity increase observed may partially come from increased FA
concentrations. However, the increasing differences between the
green curve under hypoxia conditions and the red curve under
normal conditions when excited at 425 nm (Fig. 4a) compared
with the rather unchanged fluorescence intensity differences
when excited at 365 nm (Fig. 4b) still suggested more reacted
GND group and higher MGO levels under hypoxia conditions.
In conclusion, we have reported an ‘‘AND’’-logic-gate-based
fluorescent probe NAP-DCP-4 adopting two reactive sites: OPD
and GND. The probe has improved selectivity for MGO over GO,
featuring FA-enhanced MGO detection and unique irreversible
and reversible fluorescence turn-on responses at two different
excitation wavelengths. The potential utility of the probe for
extracellular MGO detection was demonstrated in monitoring
the MGO level changes in the supernatant of RAW264.7 cells
upon LPS stimulation under either normal or hypoxia conditions.
The financial support by Shanghai Natural Science Fund
(Grant No. 20ZR1414700), Shanghai Sailing Program (Grant No.
19YF1412500), the National Natural Science Foundation of China
(Grant No. 21577037, 21738002, and 21906057) and the State Key
Laboratory of Bioreactor Engineering is greatly appreciated.
11 S.-Y. Goh and M. E. Cooper, J. Clin. Endocrinol. Metab., 2008, 93,
1143–1152.
12 A. Prasad, P. Bekker and S. Tsimikas, Curr. Cardiol. Rev., 2012, 20,
177–183.
13 A. K. Berner, O. Brouwers, R. Pringle, I. Klaassen, L. Colhoun,
C. McVicar, S. Brockbank, J. W. Curry, T. Miyata, M. Brownlee,
R. O. Schlingemann, C. Schalkwijk and A. W. Stitt, Diabetologia,
2012, 55, 845–854.
14 J. Masania, M. Malczewska-Malec, U. Razny, J. Goralska,
A. Zdzienicka, B. Kiec-Wilk, A. Gruca, J. Stancel-Mozwillo,
A. Dembinska-Kiec, N. Rabbani and P. J. Thornalley, Glycoconjugate
J., 2016, 33, 581–589.
15 D. Schroeter and A. Hoehn, Curr. Pharm. Des., 2018, 24,
5245–5251.
16 C. Angeloni, L. Zambonin and S. Hrelia, BioMed Res. Int., 2014,
238485.
´
´
17 A. Viola, F. Munari, R. Sanchez-Rodrıguez, T. Scolaro and
A. Castegna, Front. Immunol., 2019, 10, 1462.
18 T. Aki, T. Funakoshi, K. Noritake, K. Unuma and K. Uemura,
Sci. Rep., 2020, 10, 10581.
19 D. Prantner, S. Nallar, K. Richard, D. Spiegel, K. D. Collins and
S. N. Vogel, J. Leukocyte Biol., 2021, 109, 605–619.
20 T. Baumann, A. Dunkel, C. Schmid, S. Schmitt, M. Hiltensperger,
K. Lohr, V. Laketa, S. Donakonda, U. Ahting, B. Lorenz-Depiereux,
¨
J. E. Heil, J. Schredelseker, L. Simeoni, C. Fecher, N. Korber,
T. Bauer, N. Hu¨ser, D. Hartmann, M. Laschinger, K. Eyerich,
S. Eyerich, M. Anton, M. Streeter, T. Wang, B. Schraven,
D. Spiegel, F. Assaad, T. Misgeld, H. Zischka, P. J. Murray,
¨
A. Heine, M. Heikenwalder, T. Korn, C. Dawid, T. Hofmann,
¨
P. A. Knolle and B. Hochst, Nat. Immunol., 2020, 21, 555–566.
21 T. Wang, E. F. Douglass, Jr., K. J. Fitzgerald and D. A. Spiegel, J. Am.
Chem. Soc., 2013, 135, 12429–12433.
22 T. Tang, Y. Zhou, Y. Chen, M. Li, Y. Feng, C. Wang, S. Wang and
X. Zhou, Anal. Methods, 2015, 7, 2386–2390.
23 S. Gao, Y. Tang and W. Lin, J. Fluoresc., 2019, 29, 155–163.
24 M. Yang, J. Fan, J. Zhang, J. Du and X. Peng, Chem. Sci., 2018, 9,
6758–6764.
25 F. Shaheen, A. Shmygol, N. Rabbani and P. J. Thornalley,
Biochem. Soc. Trans., 2014, 42, 548–555.
26 H. Xu, Q. Liu, X. Song, C. Wang, X. Wang, S. Ma, X. Wang, Y. Feng,
X. Meng, X. Liu, W. Wang and K. Lou, Anal. Chem., 2020, 92,
13829–13838.
28 J. Zhou, H. Liu, B. Jin, X. Liu, H. Fu and D. Shangguan, J. Mater.
Chem. C, 2013, 1, 4427–4436.
29 K. J. Bruemmer, T. F. Brewer and C. J. Chang, Curr. Opin. Chem.
Biol., 2017, 39, 17–23.
Conflicts of interest
˜
´
´
´
30 J. Munoz-Sanchez and M. E. Chanez-Cardenas, J. Appl. Toxicol.,
2019, 39, 556–570.
There are no conflicts to declare.
This journal is © The Royal Society of Chemistry 2021
Chem. Commun., 2021, 57, 8166–8169 | 8169