Angewandte Chemie International Edition
10.1002/anie.201804779
COMMUNICATION
Mb(L29F,H64V)-expressing cells afforded ~0.1 g of the desired
C3-functionalized product 14b in 40% isolated yield. N-acylation
of this intermediate with p-chlorobenzoyl chloride, followed by
hydrolysis afforded the target drug. This chemoenzymatic
sequence furnishes a more concise route than that originally
[2]
a) J. B. Chen, Y. X. Jia, Org. Biomol. Chem. 2017, 15, 3550-3567; b) M.
Bandini, A. Eichholzer, Angew. Chem. Int. Ed. 2009, 48, 9608-9644.
a) E. Shaw, J. Am. Chem. Soc. 1955, 77, 4319-4323; b) T. Y. Shen, S.
Lucas, L. H. Sarett, A. Rosegray, G. W. Nuss, J. D. Willett, R. L. Ellis, F.
W. Holly, A. R. Matzuk, A. N. Wilson, C. A. Winter, T. B. Windholz, et al.,
J. Am. Chem. Soc. 1963, 85, 488-&.
[
[
[
3]
4]
5]
[3b]
reported for the synthesis of this molecule (3 vs. 5 steps) and a
viable alternative to more recent syntheses involving precious
metal catalysts.[ More importantly, these results provide a proof-
of-principle demonstration of the scalability of the Mb-catalyzed
transformation disclosed here.
a) D. J. Rawson, K. N. Dack, R. P. Dickinson, K. James, Bioorg. Med.
Chem. Lett. 2002, 12, 125-128; b) D. G. Batt, J. X. Qiao, D. P. Modi, G.
C. Houghton, D. A. Pierson, K. A. Rossi, J. M. Luettgen, R. M. Knabb, P.
K. Jadhav, R. R. Wexler, Bioorg. Med. Chem. Lett. 2004, 14, 5269-5273.
a) R. Gibe, M. A. Kerr, J. Org. Chem. 2002, 67, 6247-6249; b) Y. J. Lian,
H. M. L. Davies, J. Am. Chem. Soc. 2010, 132, 440-+; c) A. DeAngelis,
V. W. Shurtleff, O. Dmitrenko, J. M. Fox, J. Am. Chem. Soc. 2011, 133,
19]
1650-1653; d) T. Goto, Y. Natori, K. Takeda, H. Nambu, S. Hashimoto,
Tetrahedr. Asymm. 2011, 22, 907-915.
[
6]
a) Y. Cai, S. F. Zhu, G. P. Wang, Q. L. Zhou, Adv. Synth. Cat. 2011, 353,
2939-2944; b) M. Delgado-Rebollo, A. Prieto, P. J. Perez, Chemcatchem
2014, 6, 2047-2052; c) X. Gao, B. Wu, Z. Yan, Y. G. Zhou, Org. Biomol.
Chem. 2016, 14, 8237-8240; d) X. Gao, B. Wu, W. X. Huang, M. W. Chen,
Y. G. Zhou, Angew. Chem. Int. Ed. 2015, 54, 11956-11960.
[
[
7]
8]
H. Keller, E. Langer, H. Lehner, Monatsh. Chem. 1977, 108, 123-131.
a) M. Bordeaux, V. Tyagi, R. Fasan, Angew. Chem. Int. Ed. 2015, 54,
1744–1748; b) P. Bajaj, G. Sreenilayam, V. Tyagi, R. Fasan, Angew.
Chem. Int. Ed. 2016, 55, 16110–16114.
[
9]
a) G. Sreenilayam, R. Fasan, Chem. Commun. 2015, 51, 1532-1534; b)
V. Tyagi, R. B. Bonn, R. Fasan, Chem. Sci. 2015, 6, 2488-2494.
[
[
10] V. Tyagi, R. Fasan, Angew. Chem. Int. Ed. 2016, 55, 2512-2516
11] a) P. S. Coelho, E. M. Brustad, A. Kannan, F. H. Arnold, Science 2013,
339, 307-310; b) E. W. Reynolds, T. D. Schwochert, M. W. McHenry, J.
Scheme 4. Chemoenzymatic synthesis of indomethacin.
W. Watters, E. M. Brustad, Chembiochem 2017, 18, 2380-2384; c) J. G.
Gober, S. V. Ghodge, J. W. Bogart, W. J. Wever, R. R. Watkins, E. M.
Brustad, A. A. Bowers, ACS Chem. Biol. 2017, 2, 1726–1731; d) P.
Srivastava, H. Yang, K. Ellis-Guardiola, J. C. Lewis, Nat. Commun. 2015,
In summary, we have reported the first example of a
biocatalytic strategy for carbene-mediated functionalization of
indoles. This approach could be applied to the C3
6, 7789; e) P. Dydio, H. M. Key, A. Nazarenko, J. Y. Rha, V.
functionalization of unprotected indoles,
a
goal previously
Seyedkazemi, D. S. Clark, J. F. Hartwig, Science 2016, 354, 102-106; f)
S. B. J. Kan, R. D. Lewis, K. Chen, F. H. Arnold, Science 2016, 354,
1048-1051; g) A. Rioz-Martinez, J. Oelerich, N. Segaud, G. Roelfes,
Angew. Chem. Int. Ed. 2016, 55, 14136-14140; h) M. J. Weissenborn, S.
A. Low, N. Borlinghaus, M. Kuhn, S. Kummer, F. Rami, B. Plietker, B.
Hauer, Chemcatchem 2016, 8, 1636-1640; i) M. W. Wolf, D. A. Vargas,
N. Lehnert, Inorg. Chem. 2017, 56, 5623-5635; j) K. Ohora, H. Meichin,
L. M. Zhao, M. W. Wolf, A. Nakayama, J. Hasegawa, N. Lehnert, T.
Hayashi, J. Am. Chem. Soc. 2017, 139, 17265-17268; k) K. Chen, X. Y.
Huang, S. B. J. Kan, R. K. Zhang, F. H. Arnold, Science 2018, 360, 71-
75.
unattainable using synthetic transition metal catalysts due to
competition from the inherently more favourable carbene N—H
insertion reaction. Using two engineered Mb variants with
complementary substrate profile, a broad range of variously
substituted indole derivatives, including C2-substituted and
doubly substituted indoles, could be processed with high
efficiency and excellent chemoselectivity. This newly developed
Mb-catalyzed transformation could be further leveraged to
implement a concise chemoenzymatic route for the synthesis of a
drug molecule. This study expands the range of abiotic
[12] G. Sreenilayam, E. J. Moore, V. Steck, R. Fasan, Adv. Synth. Cat. 2017,
59, 2076–2089.
[13] A. Tinoco, V. Steck, V. Tyagi, R. Fasan, J. Am. Chem. Soc. 2017, 139,
293-5296.
3
transformations accessible through engineered and artificial
metalloenzymes.[20]
5
[
[
[
[
14] M. Bordeaux, R. Singh, R. Fasan, Bioorg. Med. Chem. 2014, 22, 5697-
5704.
Acknowledgements
15] Y. Wei, A. Tinoco, V. Steck, R. Fasan, Y. Zhang, J. Am. Chem. Soc. 2018,
140, 1649-1662.
This work was supported by the U.S. National Institute of Health
grant GM098628. A.T. acknowledges support from the Ford
16] V. Tyagi, G. Sreenilayam, P. Bajaj, A. Tinoco, R. Fasan, Angew. Chem.
Int. Ed. 2016, 55, 13562-13566.
Foundation
instrumentation was supported by the U.S. NSF grant CHE-
946653.
Graduate
Fellowship
Program.
LC-MS
17] R. J. Sundberg, in Heterocyclic Scaffolds II:. Topics in Heterocyclic
Chemistry, Vol. 26 (Ed.: G. Gribble), Springer, Berlin, Heidelberg, 2010,
pp. 47-115.
0
[
[
18] S. D. Babu, M. D. Hrytsak, T. Durst, Can. J. Chem. 1989, 67, 1071-1076.
19] a) Y. Kasaya, K. Hoshi, Y. Terada, A. Nishida, S. Shuto, M. Arisawa, Eur.
J. Med. Chem. 2009, 4606-4613; b) C. Mukai, Y. Takahashi, Org. Lett.
References
2
005, 7, 5793-5796.
20] a) O. F. Brandenberg, R. Fasan, F. H. Arnold, Curr. Opin. Biotech. 2017,
7, 102-111; b) F. Schwizer, Y. Okamoto, T. Heinisch, Y. F. Gu, M. M.
[
1]
a) V. Sharma, P. Kumar, D. Pathak, J. Heterocyclic Chem. 2010, 47, 491-
[
502; b) A. J. Kochanowska-Karamyan, M. T. Hamann, Chem. Rev. 2010,
110, 4489-4497; c) M. Z. Zhang, Q. Chen, G. F. Yang, Eur. J. Med. Chem.
2015, 89, 421-441.
4
Pellizzoni, V. Lebrun, R. Reuter, V. Kohler, J. C. Lewis, T. R. Ward, Chem.
Rev. 2018, 118, 142-231.
This article is protected by copyright. All rights reserved.