Page 3 of 3
ChemComm
oxygen of the dienophile (Fig. 3, bottom transition state). The
Pickett, Drug Discovery Today, 2011, 16, 164. (c) A. W. Hung, A.
Ramek, Y. Wang, T. Kaya, J. A. Wilson, P. A. Clemons and D. W.
Young, Proc. Natl. Acad. Sci. USA, 2011, 108, 6799.
M. Dow, M. Fisher, T. James, F. Marchetti and A. Nelson, Org.
Biomol. Chem., 2012, 10, 17.
A. E. Walts and W. R. Roush, Tetrahedron, 1985, 41, 3463.
R. Bonjouklian, R. E. Moore and G. M. L. Patterson, J. Org. Chem.,
6
6
0
5
calculated reaction Gibbs free energies are –93 (syn) and –85
–
1
(
anti) kJ mol . The synꢀproduct 14 is favoured also on kinetic
2
grounds; the calculated activation Gibbs free energies are 115
–
1 20
5
(syn) and 125 (anti) kJ mol . Assuming that the reaction is
irreversible, and the ratio of syn/antiꢀproduct is entirely under
kinetic control, the difference in activation energy translates into
a syn selectivity of 23:1 at 384 K. This correlates well with what
is observed experimentally for this DielsꢀAlder reaction. Analysis
3
4
1
988, 53, 5866.
5
6
M. P. Kotick, D. L. Leland, J. O. Polazzi, J. F. Howes and A. R.
Bousquet, J. Med. Chem., 1981, 24, 1445.
(a) S. N. Khan, N.ꢀJ. Cho and H.ꢀS. Kim, Tetrahedron Lett., 2007,
48, 5189. (b) Z. Kádár, A. Baji, I. Zupkó, T. Bartók, J. Wölfling and
É. Frank, Org. Biomol. Chem., 2011, 9, 8051.
1
1
0
of the H NMR spectrum of the crude material shows a syn/anti
70
ratio of approximately 20:1.
7
8
(a) S. Wendeborn, A. De Mesmaeker and W. K.ꢀD. Brill, Synlett,
1
998, 865. (b) K. M. Brummond, D. Chen, T. O. Painter, S. Mao and
D. D. Seifried, Synlett, 2008, 759.
7
8
8
9
9
5
0
5
0
5
For general reviews, see: (a) L. F. Tietze, Chem. Rev., 1996, 96, 115.
(b) K. C. Nicolaou, D. J. Edmonds and P. G. Bulger, Angew. Chem.
Int. Ed., 2006, 45, 7134. (c) C. J. Chapman and C. G. Frost,
Synthesis, 2007, 1.
For recent reviews, see: (a) S. W. Youn, Eur. J. Org. Chem., 2009,
2597. (b) J. Poulin, C. M. GriséꢀBard and L. Barriault, Chem. Soc.
Rev., 2009, 38, 3092. (c) J. Zhou, Chem. Asian J., 2010, 5, 422. (d)
M. Ruiz, P. LópezꢀAlvarado, G. Giorgi and J. C. Menéndez, Chem.
Soc. Rev., 2011, 40, 3445.
1
2
2
3
5
0
5
0
9
1
0
R. E. Ireland and D. W. Norbeck, J. Org. Chem., 1985, 50, 2198.
11 M. A. Blanchette, W. Choy, J. T. Davis, A. P. Essenfeld, S.
Masamune, W. R. Roush and T. Sakai, Tetrahedron Lett., 1984, 25,
2
183.
1
1
1
1
2 L. E. Overman and N. E. Carpenter, In Organic Reactions; L. E.
Overman; Ed.; Wiley: Hoboken, NJ, 2005; Vol. 66, 1ꢀ107 and
references therein.
(a) P. Schwab, M. B. France, J. W. Ziller and R. H. Grubbs, Angew.
Chem. Int. Ed., 1995, 34, 2039. (b) P. Schwab, R. H. Grubbs and J.
W. Ziller, J. Am. Chem. Soc., 1996, 118, 100.
4 (a) C. S. Poulsen and R. Madsen, Synthesis, 2003, 1. (b) S. T. Diver
and A. J. Giessert, Chem. Rev., 2004, 104, 1317. (c) H. Villar, M.
Frings and C. Bolm, Chem. Soc. Rev., 2007, 36, 55.
5 (a) M. D. Swift and A. Sutherland, Org. Lett., 2007, 9, 5239. (b) F. I.
McGonagle, L. Brown, A. Cooke and A. Sutherland, Org. Biomol.
Chem., 2010, 8, 3418. (c) S. Ahmad, M. D. Swift, L. J. Farrugia, H.
M. Senn and A. Sutherland, Org. Biomol. Chem., 2012, 10, 3937.
6 See supporting information for NOE experiments for compounds 14ꢀ
3
1
1
1
1
1
1
00
05
10
15
20
25
3
5
Fig. 3. DFTꢀoptimised anti (top) and syn (bottom) transition states for the
attack of Nꢀphenyl maleimide onto 13. Selected distances are given in Å.
1
1
2
3†.
7 The DielsꢀAlder products formed from the reaction of 5ꢀmembered
dienes and naphthoquinones are more stable than the analogous
products from sixꢀmembered dienes and require slightly more forcing
conditions to oxidise than just air or an excess of quinone: (a) S.
Kotha, M. Meshram and A. Tiwari, Chem. Soc. Rev., 2009, 38, 2065
and references therein. (b) B. Köhler, T.ꢀL. Su, T.ꢀC. Chou, X.ꢀJ.
Jiang and K. A. Watanabe, J. Org. Chem., 1993, 58, 1680. (c) D. M.
Gelman, P. A. Mayes, R. Mulder and P. Perlmutter, Tetrahedron:
Asymmetry, 2006, 17, 3341.
In summary, a fourꢀstep tandem process that allows the rapid
formation of multiple bonds and the generation of significant
molecular complexity has been developed. The final step of the
tandem process involving a DielsꢀAlder reaction was shown to
proceed via a hydrogen bonding directed endo transition state
forming compounds with up to four stereogenic centres in
excellent diastereoselectivity. Current studies are underway to
investigate the extension of this approach for the preparation of
natural products and medicinally important agents.
4
0
1
8 Crystallographic data for 19: C20
3 3
H16Cl NO , M = 424.69, triclinic, a
4
5
= 9.2312(3), b = 9.9744(4), c = 10.6797(4) Å, α = 74.0757(16), β =
3
7
9.2214(18), γ = 74.1904(19)°, V = 903.11(6) Å , T = 100 K, space
Financial support from the University of Glasgow (University
Scholarship to M.W.G.) is gratefully acknowledged.
group P–1, Z = 2, 40097 reflections measured, 5178 unique (Rint
=
0
wR
.061) which were used in all calculations. The final R
1
(F) = 0.0517,
2
2
(F ) = 0.122 (all data). The structure has been deposited with the
Notes and references
Cambridge Crystallographic Data Centre, with code CCDC 876917.
9 For a recent study of hydrogen bonding directed DielsꢀAlder
reactions: S. Agopcan, N. ÇelebiꢀÖlçüm, M. N. Üçisik, A. Sanyal
and V. Aviyente, Org. Biomol. Chem., 2011, 9, 8079 and references
therein.
0 For full details on computational modelling, see supplementary
information†. ∆G values are calculated at 384 K, 100 kPa, relative to
free reactants. Interestingly, the preference for synꢀdiastereomer 14
appears to be entropically favoured rather than enthalpic stabilisation
1
2
WestCHEM, School of Chemistry, The Joseph Black Building, University
of Glasgow, Glasgow G12 8QQ, UK. Fax: +44 141 330 4888; Tel: +44
5
5
0
5
1
41 330 5936; E-mail: Andrew.Sutherland@glasgow.ac.uk
†
Electronic Supplementary Information (ESI) available: Full
experimental/computational procedures, spectroscopic data, NMR spectra
for all compounds synthesised. CIF file for compound 19. CCDC 876917.
For ESI and crystallographic data in CIF or other electronic format see
DOI: 10.1039/b000000x/.
(see Table S1).
1
(a) F. Lovering, J. Bikker and C. Humblet, J. Med. Chem., 2009, 52,
752. (b) T. J. Ritchie, S. J. F. MacDonald, R. J. Young and S. D.
6
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3