Bioconjugate Chemistry
Article
(16) Woods, M., Aime, S., Botta, M., Howard, J. A. K., Moloney, J.
M., Navet, M., Parker, D., Port, M., and Rousseaux, O. (2000)
Correlation of water exchange rate with isomeric composition in
diastereoisomeric gadolinium complexes of tetra(carboxyethyl)dota
and related macrocyclic ligands. J. Am. Chem. Soc. 122, 9781−9792.
ACKNOWLEDGMENTS
■
This work was partially supported by Special Funds for
Education and Research (Development of SPECT Probes for
Pharmaceutical Innovation) from the Ministry of Education,
Culture, Sports, Science and Technology, Japan. We would also
like to thank FUJIFILM RI Pharma Co., Ltd. for providing
[67Ga]Cl3.
̌
(17) Simecek, J., Schulz, M., Notni, J., Plutnar, J., Kubícek, V.,
̌
̌
̌ ́
Havlíckova, J., and Hermann, P. (2012) Complexation of metal ions
with TRAP (1,4,7-triazacyclononane phosphinic acid) ligands and
1,4,7-triazacyclononane-1,4,7-triacetic acid: Phosphinate-containing
ligands as unique chelators for trivalent gallium. Inorg. Chem. 51,
577−590.
REFERENCES
■
(1) Fani, M., Andre,
powerful generator-based alternative to cyclotron-based PET radio-
pharmaceuticals. Contr. Media Mol. Imaging 3, 67−77.
́
J. P., and Maecke, H. R. (2008) 68Ga-PET: a
(18) Cantorias, M. V., Howell, R. C., Todaro, L., Cyr, J. E., Berndorff,
D., Rogers, R. D., and Francesconi, L. C. (2007) MO tripeptide
diastereomers (M = 99/99mTc, Re): models to identify the structure of
99mTc peptide targeted radiopharmaceuticals. Inorg. Chem. 46, 7326−
7340.
(19) Cyr, J. E., Pearson, D. A., Nelson, C. A., Lyons, B. A., Zheng, Y.,
Bartis, J., He, J., Cantorias, M. V., Howell, R. C., and Francesconi, L. C.
(2007) Isolation, characterization, and biological evaluation of syn and
anti diastereomers of [99mTc]technetium depreotide: a somatostatin
receptor binding tumor imaging agent. J. Med. Chem. 50, 4295−4303.
(20) Haubner, R., Wester, H. J., Reuning, U., Senekowitsch-
(2) Green, M. A., and Welch, M. J. (1989) Gallium radio-
pharmaceutical chemistry. Int. J. Radiat. Appl. Instrum. Part B 16,
435−443 445−448.
(3) Weiner, R. E. (1996) The mechanism of 67Ga localization in
malignant disease. Nucl. Med. Biol. 23, 745−751.
(4) Clarke, E. T., and Martell, A. E. (1991) Stabilities of the Fe(III),
Ga(III) and In(III) chelates of N,N′,N″-triazacyclononanetriacetic
acid. Inorg. Chim. Acta 181, 273−280.
(5) Ferreira, C. L., Lamsa, E., Woods, M., Duan, Y., Fernando, P.,
Bensimon, C., Kordos, M., Guenther, K., Jurek, P., and Kiefer, G. E.
(2010) Evaluation of bifunctional chelates for the development of
gallium-based radiopharmaceuticals. Bioconjugate Chem. 21, 531−536.
(6) Jae, M. J., Mee, K. H., Young, S. C., Lee, Y. S., Young, J. K., Gi, J.
C., Dong, S. L., Chung, J. K., and Myung, C. L. (2008) Preparation of
a promising angiogenesis PET imaging agent: 68Ga-labeled c-
(RGDyK)-isothiocyanatobenzyl-1,4,7-triazacyclononane-1, 4,7-tria-
cetic acid and feasibility studies in mice. J. Nucl. Med. 49, 830−836.
(7) Velikyan, I., Maecke, H., and Langstrom, B. (2008) Convenient
preparation of 68Ga-based PET-radiopharmaceuticals at room temper-
ature. Bioconjugate Chem. 19, 569−573.
Schmidtke, R., Diefenbach, B., Kessler, H., Stocklin, G., and
̈
Schwaiger, M. (1999) Radiolabeled ανβ3 integrin antagonists: A
new class of tracers for tumor targeting. J. Nucl. Med. 40, 1061−1071.
(21) Eisenwiener, K. P., Powell, P., and Macke, H. R. (2000) A
̈
convenient synthesis of novel bifunctional prochelators for coupling to
bioactive peptides for radiometal labelling. Bioorg. Med. Chem. Lett. 10,
2133−2135.
(22) Imai, S., Morimoto, J., Tsubura, Y., Esaki, K., Michalides, R.,
Holmes, R. S., von Deimling, O., and Hilgers, J. (1986) Genetic
marker patterns and endogenous mammary tumor virus genes in
inbred mouse strains of Japan. Exp. Anim. 35, 263−273.
(23) Pierrard, J. C., Rimbault, J., Aplincourt, M., Le Greneur, S., and
Port, M. (2008) New synthesis of a high molecular weight ligand
derived from dota; thermodynamic stability of the MRI contrast agent
formed with gadolinium. Contr. Media Mol. Imaging 3, 243−252.
(24) Liu, S. (2009) Radiolabeled cyclic RGD peptides as integrin
αvβ3-targeted radiotracers: Maximizing binding affinity via bivalency.
Bioconjugate Chem. 20, 2199−2213.
(25) Chen, X., Tohme, M., Park, R., Hou, Y., Bading, J. R., and Conti,
P. S. (2004) Micro-PET imaging of αvβ3-integrin expression with18F-
labeled dimeric RGD peptide. Mol. Imaging 3, 96−104.
(26) Dijkgraaf, I., Yim, C.-B., Franssen, G., Schuit, R., Luurtsema, G.,
Liu, S., Oyen, W., and Boerman, O. (2011) PET imaging of αvβ3
integrin expression in tumours with 68Ga-labelled mono-, di- and
tetrameric RGD peptides. Eur. J. Nucl. Med. Mol. Imaging 38, 128−137.
(27) Li, Z. B., Chen, K., and Chen, X. (2008) 68Ga-labeled
multimeric RGD peptides for microPET imaging of integrin αvβ3
expression. Eur. J. Nucl. Med. Mol. Imaging 35, 1100−1108.
(28) Liu, S. (2006) Radiolabeled multimeric cyclic RGD peptides as
integrin αvβ3 targeted radiotracers for tumor imaging. Mol.
Pharmaceutics 3, 472−487.
(29) Jia, B., Liu, Z., Shi, J., Yu, Z., Yang, Z., Zhao, H., He, Z., Liu, S.,
and Wang, F. (2008) Linker effects on biological properties of 111In-
labeled DTPA conjugates of a cyclic RGDfK dimer. Bioconjugate Chem.
19, 201−210.
(30) Chen, X., Park, R., Shahinian, A. H., Bading, J. R., and Conti, P.
S. (2004) Pharmacokinetics and tumor retention of 125I-labeled RGD
peptide are improved by PEGylation. Nucl. Med. Biol. 31, 11−19.
(31) Moore, D. A., Fanwick, P. E., and Welch, M. J. (1990) A novel
hexachelating amino-thiol ligand and its complex with gallium(III).
Inorg. Chem. 29, 672−676.
(32) Bandoli, G., Dolmella, A., Tisato, F., Porchia, M., and Refosco,
F. (2009) Mononuclear six-coordinated Ga(III) complexes: A
comprehensive survey. Coord. Chem. Rev. 253, 56−77.
(33) Knetsch, P. A., Petrik, M., Griessinger, C. M., Rangger, C., Fani,
M., Kesenheimer, C., Von Guggenberg, E., Pichler, B. J., Virgolini, I.,
Decristoforo, C., and Haubner, R. (2011) NODAGA-RGD for
́
(8) Andre, J. P., Maecke, H. R., Zehnder, M., Macko, L., and Akyel,
K. G. (1998) 1,4,7-Triazacyclononane-1-succinic acid-4,7-diacetic acid
(NODASA): A new bifunctional chelator for radio gallium-labelling of
biomolecules. Chem. Commun., 1301−1302.
(9) Riss, P. J., Kroll, C., Nagel, V., and Rosch, F. (2008) NODAPA-
̈
OH and NODAPA-(NCS)n: Synthesis, 68Ga-radiolabelling and in
vitro characterisation of novel versatile bifunctional chelators for
molecular imaging. Bioorg. Med. Chem. Lett. 18, 5364−5367.
(10) Eisenwiener, K. P., Prata, M. I. M., Buschmann, I., Zhang, H. W.,
Santos, A. C., Wenger, S., Reubi, J. C., and Macke, H. R. (2002)
̈
NODAGATOC, a new chelator-coupled somatostatin analogue
labeled with [67/68Ga] and [111In] for SPECT, PET, and targeted
therapeutic applications of somatostatin receptor (hsst2) expressing
tumors. Bioconjugate Chem. 13, 530−541.
(11) Notni, J., Hermann, P., Havlíck
Plutnar, J., Loktionova, N., Riss, P. J., Rosch, F., and Lukes,
̌
ova,
̈
́
J., Kotek, J., Kubíce
̌
k, V.,
I. (2010) A
̌
triazacyclononane-based bifunctional phosphinate ligand for the
preparation of multimeric 68GA tracers for positron emission
tomography. Chem.Eur. J. 16, 7174−7185.
̌
(12) Notni, J., Simece
̌
k, J., Hermann, P., and Wester, H. J. (2011)
TRAP, a powerful and versatile framework for gallium-68 radiophar-
maceuticals. Chem.Eur. J. 17, 14718−14722.
(13) Uehara, T., Guerra Gomez, F. L., Rokugawa, T., and Arano, Y.
(2011) A new triazacyclononane-based ligand for trivalent 68Ga tracers
of high stability for positron emission tomography. J. Nucl. Med. 52,
1473.
(14) Singh, A. N., Liu, W., Hao, G., Kumar, A., Gupta, A.O. Z O. K.,
Hsieh, J.-T., and Sun, X. (2011) Multivalent bifunctional chelator
scaffolds for gallium-68 based positron emission tomography imaging
probe design: signal amplification via multivalency. Bioconjugate Chem.
22, 1650−1662.
(15) Abiraj, K., Jaccard, H., Kretzschmar, M., Helm, L., and Maecke,
H. R. (2008) Novel DOTA-based prochelator for divalent peptide
vectorization: Synthesis of dimeric bombesin analogues for multi-
modality tumor imaging and therapy. Chem. Commun., 3248−3250.
2237
dx.doi.org/10.1021/bc300340g | Bioconjugate Chem. 2012, 23, 2229−2238