4
Tetrahedron
10. A. L. Harvey, L. C. Young, A. M. Viljoen and N. P. Gericke, J
Scheme 5. Synthesis of 3,4-diaryl-substituted hexhydroindoles
Ethnopharmacol, 2011, 137, 1124-1129.
11. S. Hanessian, K. Ersmark, X. T. Wang, J. R. Del Valle, N.
Blomberg, Y. F. Xue and O. Fjellstrom, Bioorg Med Chem Lett,
2007, 17, 3480-3485.
12. A. Cordero-Vargas, X. Urbaneja and J. Bonjoch, Synlett, 2007,
2379-2382.
13. S. V. Pansare, R. Lingampally and R. L. Kirby, Org Lett, 2010,
12, 556-559.
14. G. Pandey, R. Kumar, P. Banerjee and V. G. Puranik, Eur J Org
Chem, 2011, 4571-4587.
15. Y. F. Guan, H. B. Zhang, C. X. Pan, J. Wang, R. Huang and Q.
L. Li, Org Biomol Chem, 2012, 10, 3812-3814.
16. G. Pandey and S. R. Gadre, Pure Appl Chem, 2012, 84, 1597-
1619.
17. S. B. Bhorkade and K. B. Gavhane, Tetrahedron Lett, 2016, 57,
2575-2578.
18. Z. Jin, Nat Prod Rep, 2009, 26, 363-381.
19. F. Lovering, J. Bikker and C. Humblet, J Med Chem, 2009, 52,
6752-6756.
20. F. Lovering, Medchemcomm, 2013, 4, 515-519.
21. I. Ungureanu, P. Klotz and A. Mann, Angew Chem Int Edit,
2000, 39, 4615-4617.
In order to remove the arylsulfonyl group that was tethered to
the nitrogen of the 3,4-diaryl-substituted hexahydro-1H-indoles,
we treated 5a, 5e, 7, and 8 with sodium/naphthalene in anhydrous
1,2-dimethoxyethane (Scheme 5)15 and compounds 9-12 were
obtained in moderate yields (22-57%) as single isomers except
12. The Cl and F atoms were well tolerated in the reductive
reaction condition but Br and CF3 groups were not. Overall, this
transformation allows efficient synthesis of 3,4-diaryl-substituted
hexahydro-1H-indoles in the form of free amine.
In conclusion, we reported a two-step protocol that enables
efficient syntheses of 3,4-diaryl-substituted hexahydroindoles in
good to high yields with excellent diastereoselectivities. Firstly,
SnCl4 promoted formation of allylic cations from cyclohexanols,
which underwent nucleophilic addition by aziridines and yielded
allylic amine-containing compounds in good to high yields. In
addition, cyclization of the allylic amine-containing compounds
further furnished 3,4-diaryl-substituted hexahydroindoles in good
yields as single isomers in the presence of silver salts.
Subsequent removal of the N protecting groups of cyclization
products provided 4-diaryl-substituted hexahydroindoles as free
amines. The Cl, F, and aniline groups are compatible in our
methods, while they are also important for fine tuning of
bioactivity. Therefore, this two-step protocol could allow
efficient access to valuable bicyclic building blocks.
22. E. Martinand-Lurin, R. Gruber, P. Retailleau, P. Fleurat-Lessard
and P. Dauban, J Org Chem, 2015, 80, 1414-1426.
23. S. H. Krake and S. C. Bergmeier, Tetrahedron, 2010, 66, 7337-
7360.
24. A. L. Cardoso and T. M. V. D. P. E. Melo, Eur J Org Chem,
2012, 6479-6501.
Acknowledgments
25. P. Dauban and G. Malik, Angew Chem Int Edit, 2009, 48, 9026-
9029.
We thank the National Natural Science Foundation of China
grant 81673295 and "Personalized medicines-molecular
signature-based drug discovery and development", strategic
priority research program of the Chinese Academy of Sciences,
grant No. XDA12020322 for financial support. We also thank
Shanghai Institute of Materia Medica startup-grant and
Recruitment Program of Global Youth Experts (The 1000 Youth
Talents Program) for financial support.
26. Y. J. Zhao, L. J. S. Tan, B. Li, S. M. Li and T. P. Loh, Chem
Commun, 2009, 3738-3740.
27. Z. Chai, Y. M. Zhu, P. J. Yang, S. Y. Wang, S. W. Wang, Z. Liu
and G. S. Yang, J Am Chem Soc, 2015, 137, 10088-10091.
28. T. Y. Lin, H. H. Wu, J. J. Feng and J. L. Zhang, Acs Catal, 2017,
7, 4047-4052.
29. W. S. Johnson, T.-T. Li, C. A. Harbert, W. R. Bartlett, T. R.
Herrin, B. Staskun and D. H. Rich, J Am Chem Soc, 1970, 92,
4461-4463.
30. R. L. Markezich, W. E. Willy, B. E. McCarry and W. S.
Johnson, J Am Chem Soc, 1973, 95, 4414-4416.
31. The CCDC numbers 1811176, 1811174, and 1811175 contains
the supplementary crystallographic data for 3i, 5d, and 7,
respectively. These data can be obtained free of charge from The
References and notes
1. M. Bos, W. P. Burkard, J. L. Moreau and P. Schonholzer, Helv
Chim Acta, 1990, 73, 932-939.
2. C. Gravier-Pelletier, W. Maton, G. Bertho and Y. Le Merrer,
Tetrahedron, 2003, 59, 8721-8730.
3. M. Hayashi, T. Unno, M. Takahashi and K. Ogasawara,
Tetrahedron Lett, 2002, 43, 1461-1464.
4. J. R. Lewis, Nat Prod Rep, 2002, 19, 223-258.
5. J. R. Lewis, Nat Prod Rep, 2001, 18, 95-128.
6. S. Hanessian, M. Tremblay and J. F. W. Petersen, J Am Chem
Soc, 2004, 126, 6064-6071.
Cambridge
Crystallographic
Data
Centre
via
32. Y. J. Zhao, L. Liu, W. Sun, J. F. Lu, D. McEachern, X. Q. Li, S.
H. Yu, D. Bernard, P. Ochsenbein, V. Ferey, J. C. Carry, J. R.
Deschamps, D. X. Sun and S. M. Wang, J Am Chem Soc, 2013,
135, 7223-7234.
Supplementary Material
7. S. Hanessian, X. T. Wang, K. Ersmark, J. R. DelValle and E.
Klegraf, Org Lett, 2009, 11, 5566-5566.
8. K. Ersmark, J. R. Del Valle and S. Hanessian, Angew Chem Int
Edit, 2008, 47, 1202-1223.
Supplementary data associated with this article can be found,
in the online version, at
9. H. J. Shin, H. Matsuda, M. Murakami and K. Yamaguchi, J Org
Chem, 1997, 62, 1810-1813.