Paper
RSC Advances
selectivity to IPB and MIPB increases, corresponding to the 12 O. Larlus, S. Mintova, S. T. Wilson, R. R. Willis, H. Abrevaya
slight decrease in their acid strength. In conclusion, the cata-
lytic performances of the BEA samples correspond to their
active sites and pore structure.
and T. Bein, Microporous Mesoporous Mater., 2011, 142, 17–
25.
13 X. Yang, J. Bian, J. Huang, W. Xin, T. Lu, C. Chen, Y. Su,
L. Zhou, F. Wang and J. Xu, Green Chem., 2017, 19, 692–701.
14 M. A. Camblor, M. Costantini, A. Corma, L. Gilbert, P. Esteve,
A. Martinez and S. Valencia, Chem. Commun., 1996, 1339–
1340.
Conclusions
In summary, hierarchical beta zeolites with various SiO2/Al2O3
ratios have been synthesized in NaF media using the aerosol-
assisted route. The synthesis of the beta zeolites mainly fol-
lowed the liquid-phase mechanism. With the increase of the
SiO2/Al2O3 ratio, the morphology changes from spherical nano-
aggregates to plate-like crystals with a size of 100 ꢂ 500 ꢂ
500 nm. All BEA samples exhibit hierarchical-pores, which is
the key to improving the catalytic performance. The evaluation
of 1,3,5-TIPB cracking is consistent with the acid sites and pore
structure of the beta zeolites. Beta zeolites with hierarchical
pore structures are promising catalysts for the conversion and
adsorption of large organic molecules.
15 T. Blasco, M. A. Camblor, A. Corma, P. Esteve, A. Martinez,
C. Prietob and S. Valencia, Chem. Commun., 1996, 2367–
2368.
16 F. Taborda, Z. Wang, T. Willhammar, C. Montes and X. Zou,
Microporous Mesoporous Mater., 2012, 150, 38–46.
17 A. Corma, L. T. Nemeth, M. Renz and S. Valencia, Nature,
2001, 412, 423–425.
18 Z. Zhu, H. Xu, J. Jiang, H. Wu and P. Wu, Chem. Commun.,
2017, 53, 12516–12519.
19 Z. He, J. Wu, B. Gao and H. He, ACS Appl. Mater. Interfaces,
2015, 7, 2424–2432.
20 C. T. Brigden and C. D. Williams, Microporous Mesoporous
Mater., 2007, 100, 118–127.
21 H. Jon, Y. Oumi, K. Itabashi and T. Sano, J. Cryst. Growth,
2007, 307, 177–184.
Conflicts of interest
There are no conicts to declare.
22 M. A. Camblor, A. Corma and S. Valencia, J. Mater. Chem.,
1998, 8, 2137–2145.
23 J. Weitkamp, L. Puppe and T. Chemie, Catalysis and Zeolites,
Springer-Verlag, Berlin, Heidelberg, New York, 1999.
24 J. Stelzer, M. Paulus, M. Hunger and J. Weitkamp,
Microporous Mesoporous Mater., 1998, 22, 1–8.
Acknowledgements
This work was nancially supported by the National Science
Foundation of China (NSFC, Grant 21473016).
´
25 D. P. Serrano, R. VanGrieken, P. Sanchez, R. Sanz and
´
L. RodrıGuez, Microporous Mesoporous Mater., 2001, 46, 35–
46.
References
¨
¨
26 K. Moller, B. Yilmaz, U. Muller and T. Bein, Chem. Mater.,
1 J. B. Higgins, R. B. LaPierre, J. L. Schlenker, A. C. Rohrman,
2011, 23, 4301–4310.
J. D. Wood, G. T. Keer and W. J. Rohrbaugh, Zeolites, 1988, 8, 27 A. Li, C. Huang, C. W. Luo, W. J. Yi and Z. S. Chao, RSC Adv.,
446–452.
2017, 7, 9551–9561.
2 M. G. Clerici, Top. Catal., 2000, 13, 373–386.
28 B. Wang, M. Lin, J. Yang, X. Peng, B. Zhu, Y. Zhang, C. Xia,
W. Liao and X. Shu, Microporous Mesoporous Mater., 2018,
266, 43–46.
¨
3 B. Yilmaz and U. Muller, Top. Catal., 2009, 52, 888–895.
4 X. Zhao, L. Wang, P. Guo, N. Yan, T. Sun, S. Lin, X. Guo,
P. Tian and Z. Liu, Catal. Sci. Technol., 2018, 8, 2966–2974.
29 K. Egeblad, M. Kustova, S. K. Klitgaard, K. Zhu and
C. H. Christensen, Microporous Mesoporous Mater., 2007,
101, 214–223.
30 Y. Yuan, P. Tian, M. Yang, D. Fan, L. Wang, S. Xu, C. Wang,
D. Wang, Y. Yang and Z. Liu, RSC Adv., 2015, 5, 9852–9860.
¨
5 R. Otomo, U. Muller, M. Feyen, B. Yilmaz, X. Meng, F. Xiao,
H. Gies, X. Bao, W. Zhang, D. De Vos and T. Yokoi, Catal. Sci.
Technol., 2016, 6, 713–721.
6 Z. Liu, X. Dong, Y. Zhu, A. H. Emwas, D. Zhang, Q. Tian and
Y. Han, ACS Catal., 2015, 5, 5837–5845.
´
´
31 D. Verboekend and J. Perez-Ramırez, Chemistry, 2011, 17,
7 M. Bregolato, V. Bolis, C. Busco, P. Ugliengo, S. Bordiga,
1137–1147.
F. Cavani, N. Ballarini, L. Maselli, S. Passeri, I. Rossetti and 32 D. P. Debecker, S. L. Bras and C. d. Boissie`re, Chem. Soc.
L. Forni, J. Catal., 2007, 245, 285–300. Rev., 2018, 47, 4112–4155.
8 R. Otomo, T. Yokoi and T. Tatsumi, Appl. Catal., A, 2015, 505, 33 Z. Guo, G. Xiong, L. Liu, W. Song and Q. Jia, CrystEngComm,
28–35.
2017, 19, 2695–2701.
9 Z. Zhu, H. Xu, J. Jiang, H. Wu and P. Wu, ACS Appl. Mater. 34 G. Xiong, J. Yin, J. Liu, X. Liu, Z. Guo and L. Liu, RSC Adv.,
Interfaces, 2017, 9, 27273–27283.
2016, 6, 101365–101371.
10 M. A. Camblor, A. Corma and S. Valencia, Chem. Commun., 35 G. Xiong, X. Liu, R. Zhao, J. Liu, J. Yin, Q. Meng, Z. Guo and
1996, 2365–2366. L. Liu, Microporous Mesoporous Mater., 2017, 249, 97–104.
11 M. A. Camblor, P. A. Barrett, M.-J. DıAz-Cabanas, 36 Q. Meng, J. Liu, G. Xiong, X. Liu, L. Liu and H. Guo,
´
˜
´
L. A. Villaescusa, M. Puche, T. Boix, E. Perez and H. Koller,
Microporous Mesoporous Mater., 2018, 266, 242–251.
Microporous Mesoporous Mater., 2001, 48, 11–22.
This journal is © The Royal Society of Chemistry 2019
RSC Adv., 2019, 9, 3653–3660 | 3659