ChemComm
Communication
1
¶
The H NMR signal arising from proton of the phenyl spacer in
between the triazoliums was not used to probe anion binding as
coalescence of the signal was observed with those arising from the
other phenyl protons during the titration experiments. Instead, the
ortho-aromatic tris-TEG proton signals for 1a and 1b were monitored for
consistency.
1
8
A H NMR titration was also performed on 1b using 10 mM HEPES
solution in D
constant obtained (K
from the titrations carried out in pure D
2
O (pD = 7.4) with perrhenate at 298 K. The association
À1
a
= 45 Æ 4 M ) was consistent with those obtained
2
O (see ESI†).
1
2
3
L. Keith and W. Telliard, Environ. Sci. Technol., 1979, 13, 416–423.
B. Wakoff and K. L. Nagy, Environ. Sci. Technol., 2004, 38, 1765–1771.
R. Amano, A. Ando, T. Hiraki, H. Mori, H. Matsuda and K. Hisasa,
Radioisotopes, 1990, 39, 583–586.
4
5
B. M. Rambo and J. L. Sessler, Chem. – Eur. J., 2011, 17, 4946–4959.
E. A. Katayev, G. V. Kolesnikov and J. L. Sessler, Chem. Soc. Rev.,
2009, 38, 1572–1586.
6
7
8
9
R. Alberto, G. Bergamaschi, H. Braband, T. Fox and V. Amendola,
Angew. Chem., Int. Ed., 2012, 51, 9772–9776.
V. Amendola, G. Bergamaschi, M. Boiocchi, R. Alberto and H. Braband,
Chem. Sci., 2014, 5, 1820–1826.
L. S. Zuckier, O. Dohan, Y. Li, C. J. Chang, N. Carrasco and E. Dadachova,
J. Nucl. Med., 2004, 45, 500–507.
F. Jaubert, Appl. Radiat. Isot., 2008, 66, 960–964.
10 W. A. Herrmann, A. M. J. Rost, J. K. M. Mitterpleininger, N. Szesni,
S. Sturm, R. W. Fischer and F. E. K u¨ hn, Angew. Chem., Int. Ed., 2007,
4
6, 7301–7303.
1 R. Cao, B. D. McCarthy and S. J. Lippard, Inorg. Chem., 2011, 50,
499–9507.
2 L. C. Gilday, N. G. White and P. D. Beer, Dalton Trans., 2013, 42,
5766–15773.
3 N. L. Kilah, M. D. Wise, C. J. Serpell, A. L. Thompson, N. G. White,
K. E. Christensen and P. D. Beer, J. Am. Chem. Soc., 2010, 132,
1
1
1
9
1
Fig. 3 Luminescence spectra of (A) HB receptor 1a and (B) XB receptor 1b
À
upon titration of increasing quantities of ReO
4
up to 500 equivalents ([host] =
10 mM in 10 mM aqueous HEPES buffer, pH = 7.4, lex = 320 nm, T = 293 K).
11893–11895.
1
4 B. R. Mullaney, A. L. Thompson and P. D. Beer, Angew. Chem., Int.
Ed., 2014, 53, 11458–11462.
indicating that no binding occurred with the HB receptor. In 15 G. Cavallo, P. Metrangolo, T. Pilati, G. Resnati, M. Sansotera and
G. Terraneo, Chem. Soc. Rev., 2010, 39, 3772–3783.
6 P. Metrangolo, H. Neukirch, T. Pilati and G. Resnati, Acc. Chem. Res.,
contrast, the analogous titration of perrhenate with XB receptor 1b
resulted in a significant increase in fluorescence intensity (Fig. 3B)
1
2005, 38, 386–395.
without any detectable change in sample emission wavelength 17 T. M. Beale, M. G. Chudzinski, M. G. Sarwar and M. S. Taylor,
Chem. Soc. Rev., 2013, 42, 1667–1680.
8 M. G. Sarwar, B. Dragisi ´c , E. Dimitrijevi ´c and M. S. Taylor,
Chem. – Eur. J., 2013, 19, 2050–2058.
19 E. A. L. Gillis, M. Demireva, M. G. Sarwar, M. G. Chudzinski, M. S.
(lem = 485 nm). This may be attributed to the increased rigidifica-
tion of the host that results from XB recognition of perrhenate,
which disfavours non-radiative decay pathways.
1
Taylor, E. R. Williams and T. D. Fridgen, Phys. Chem. Chem. Phys.,
In summary, a water-soluble XB bis-iodotriazolium acyclic
receptor has been shown to exhibit superior perrhenate anion
recognition behaviour in water compared to the hydrogen bonding
analogue. Thermodynamic analysis has revealed that the halogen
bond-driven perrhenate binding is favoured enthalpically and
disfavoured entropically. Furthermore, the XB receptor is capable
of sensing perrhenate in water via a fluorescent response. To the
best of our knowledge, this is the first example of fluorescent
perrhenate sensing utilising halogen bonding interactions. The
design and construction of XB receptors for anion recognition and
sensing applications in water is continuing in our laboratories.
J.Y.C.L acknowledges the Agency for Science, Technology and
Research (A*STAR), Singapore, for a postgraduate scholarship.
2013, 15, 7638–7647.
2
2
2
2
2
2
2
2
2
2
0 A. Caballero, S. Bennett, C. J. Serpell and P. D. Beer, CrystEngComm,
2013, 15, 3076–3081.
1 L. C. Gilday, T. Lang, A. Caballero, P. J. Costa, V. F ´e lix and P. D. Beer,
Angew. Chem., Int. Ed., 2013, 52, 4356–4360.
2 A. Caballero, F. Zapata, N. G. White, P. J. Costa, V. F ´e lix and
P. D. Beer, Angew. Chem., Int. Ed., 2012, 51, 1876–1880.
3 N. L. Kilah, M. D. Wise and P. D. Beer, Cryst. Growth Des., 2011, 11,
4565–4571.
4 A. Caballero, N. G. White and P. D. Beer, Angew. Chem., Int. Ed.,
2011, 50, 1845–1848.
5 M. J. Langton, S. W. Robinson, I. Marques, V. F ´e lix and P. D. Beer,
Nat. Chem., 2014, 6, 1039–1043.
6 R. S. Dhanikula, A. Argaw, J.-F. Bouchard and P. Hildgen, Mol.
Pharmaceutics, 2008, 5, 105–116.
7 M. Liu, K. Kono and J. M. J. Fr ´e chet, J. Polym. Sci., Part A: Polym.
Chem., 1999, 37, 3492–3503.
8 W. S. Brotherton, R. J. Clark and L. Zhu, J. Org. Chem., 2012, 77,
6443–6455.
9 Y.-M. Wu, J. Deng, Y. Li and Q.-Y. Chen, Synthesis, 2005, 1314–1318.
30 J. E. Hein, J. C. Tripp, L. B. Krasnova, K. B. Sharpless and V. V. Fokin,
Angew. Chem., Int. Ed., 2009, 48, 8018–8021.
31 M. J. Hynes, J. Chem. Soc., Dalton Trans., 1993, 311–312.
Notes and references
1
‡
A control H NMR titration experiment was performed using 1a.2PF
6
with sodium nitrate in water (see ESI†), which showed no evidence of
nitrate binding even at a nitrate: 1a.2PF mole ratio of 120 : 1.
6
§
All anions gave downfield perturbations of the tris-TEG aromatic ortho- 32 B. A. Moyer and P. V. Bonnesen, in Supramolecular Chemistry of
À
proton signal for receptor 1a except ClO
shift (see ESI†). All anions gave downfield perturbations of this signal
for receptor 1b, including ClO
4
, which showed an upfield
Anions, ed. A. Bianchi, K. Bowman-James and E. Garcia-Espana,
Wiley-VCH, Inc., New York, 1979, pp. 1–44.
À
4
.
33 S. Kubik, Chem. Soc. Rev., 2010, 39, 3648–3663.
This journal is ©The Royal Society of Chemistry 2015
Chem. Commun.