2
18
M. Farias et al. / Applied Catalysis A: General 384 (2010) 213–219
Table 3
Epoxidation of oleic acid using the catalytic system MoO2(acac)2/TBHP , determined by 1H NMR spectroscopy.
a
◦
TONb
TOFc (h−1
)
Reaction temperature ( C)
Conversion (%)
Epoxidation (%)
Selectivity (%)
8
10
0
67.2 ± 0.6
62.5 ± 0.9
40.6 ± 0.6
42.2 ± 0.9
60.3
67.9
40.6
42.2
20.3
21.1
1
a
Reactions were carried out with toluene as solvent, 2 h and molar ratio of anhydrous TBHP:oleic acid:catalyst of 100:100:1. The results were calculated by 1H NMR, 5%
of incertitude.
b
TON: total turnover number, moles of epoxide formed per mole of catalyst.
TOF: turnover frequency which is calculated by the expression [epoxide]/[catalyst] × time (h ).
c
−1
Scheme 4. Fragmentations of epoxidized methyl oleate.
4
. Conclusions
[6] T. Tsujimoto, H. Uyama, S. Kobayashi, Macromol. Rapid Commun. 24 (2003)
11–714.
7
[
[
7] Z. Zong, J. He, M.D. Soucek, Prog. Org. Coat. 53 (2005) 83–90.
8] M.A. de Luca, M. Martinelli, M.M. Jacobi, P.L. Becker, M.F. Ferrão, J. Am. Oil Chem.
Soc. 83 (2006) 147–151.
The results obtained demonstrate the catalytic potential of the
system MoO (acac) /TBHP in the epoxidation of soybean oil. This
2
2
[
9] M.A. de Luca, M. Martinelli, C.C.T. Barbieri, Prog. Org. Coat. 65 (2009) 375–380.
catalytic system shows great promise and may substitute for clas-
sical methods of epoxidation, particularly since it offers lower
environmental impact with a minimization of residues. Under the
conditions tested, the best results obtained for conversion, epoxi-
[
[
10] H.H. Masjuki, S.M. Sapuan, J. Am. Oil Chem. Soc. 72 (1995) 609–612.
11] B.K. Sharma, A. Adhvaryu, Z. Liu, S.Z. Erhan, J. Am. Oil Chem. Soc. 83 (2006)
129–136.
[12] X. Wu, X. Zhang, S. Yang, H. Chen, D. Wang, J. Am. Oil Chem. Soc. 77 (2000)
61–563.
13] P.S. Lathi, B. Mattiasson, Appl. Catal. B 69 (2007) 207–212.
[14] A. Campanella, M.A. Baltanás, M.C. Capel-Sánchez, J.M. Campos-Martin, J.L.G.
Fierro, Green Chem. 6 (2004) 330–334.
15] K.A. Jorgensen, Chem. Rev. 89 (1989) 431–458.
16] J.M. Mitchell, N.S. Finney, J. Am. Oil Chem. Soc. 123 (2001) 862–869.
17] R.M. Calvente, J.M. Campos-Martin, J.L.C. Fierro, Catal. Commun. 3 (2002)
247–251.
18] J.M. Sobczak, J.J. Ziólkowski, Appl. Catal. A 248 (2003) 261–268.
19] M.G. Topuzova, S.V. Kotov, T.M. Kolev, Appl. Catal. A 281 (2005) 157–166.
20] A.E. Gerbase, J.R. Gregório, M. Martinelli, M.C. Brasil, A.N.F. Mendes, J. Am. Oil
Chem. Soc. 79 (2002) 179–181.
5
dation and selectivity occurred when the reaction was carried out at
[
◦
1
10 C for 2 h. For vegetable oils that are composed predominantly
of triglycerides, the positions of unsaturation within the fatty acids
may be less susceptible to epoxidation in comparison with terminal
double bonds of short chain alkenes.
[
[
[
The use of 1H NMR techniques allowed facile and rapid iden-
tification and quantification of the products of vegetable oil
epoxidation. Through analysis of the characteristic signals of the
hydrogens present in soybean oil and epoxidized oil, it was possi-
ble to determine the yield and selectivity of the reactions, thereby
permitting evaluation of the reaction conditions employed in the
catalytic epoxidation.
[
[
[
[
21] F.E. Kühn, A. Scherbaum, W.A. Herrmann, J. Organomet. Chem. 689 (2004)
4149–4164.
[
22] G.S. Owens, J. Arias, M.M. Abu-Omar, Catal. Today 55 (2000) 317–363.
[23] M.D. Refvik, R.C. Larock, J. Am. Oil Chem. Soc. 76 (1999) 99–102.
24] F.E. Kühn, A.M. Santos, M. Abrantes, Chem. Rev. 106 (2006) 2455–2475.
25] F.E. Kühn, A.M. Santos, W.A. Hermann, Dalton Trans. (2005) 2483–2491.
26] M. Herbert, F. Montilla, R. Moyano, A. Pastor, E. Álvarez, A. Galindo, Polyedron
[
[
[
Acknowledgements
28 (2009) 3929–3934.
[
[
[
27] N.A. Koshel, V.N. Sapunov, B.S. Turov, V.V. Popova, B.F. Ustavshchikov, Polym.
Sci. 22 (1980) 2642–2647.
28] S. Gil, R. Gonzalez, R. Mestres, V. Sanz, A. Zapater, React. Funct. Polym. 42 (1999)
The authors wish to thank Prof. Dr. Paulo H. Schneider (UFRGS,
Porto Alegre, RS, Brazil) for the determination of the parameters
used in the acquisition of the 1H NMR spectra, Prof. Dr. Norberto
P. Lopes (USP, Ribeirão Preto, SP, Brazil) for GC/MS analyses and
FAPERGS and CNPq for financial assistance to the project. M. Farias
is indebted to the Instituto Federal de Educa c¸ ão Ciência e Tecnologia
Sul-rio-grandense (Pelotas, RS, Brazil) for granting study leave, and
to CAPES for scholarship.
65–72.
29] M.L.A. Von Holleben, M.C. Schuch, Quim. Nova 20 (1997) 58–71.
[30] R.A. Sheldon, M. Wallau, I.W.C.E. Arends, U.F. Schuchardt, Acc. Chem. Res. 31
1998) 485–493.
[
(
31] C.C.L. Pereira, S.S. Balula, F.F.A. Paz, A.A. Valente, M. Pillinger, J. Klinowski, I.S.
Gon c¸ alves, Inorg. Chem. 46 (2007) 8508–8510.
[32] P.J. Martinez de la Cuesta, E.R. Martinez, J.M.R. Maroto, F.M. Jimenez, Ann. Qui.
A: Fis. Tec. 84 (1988) 231–235.
[
[
[
33] P. Wang, B.Y. Tao, J. Am. Oil Chem. Soc. 75 (1998) 9–14.
34] H.A.J. Aerts, P.A. Jacobs, J. Am. Oil Chem. Soc. 81 (2004) 841–846.
35] T. Rothenbacher, W. Schwack, Rapid Commun. Mass Spectrom. 21 (2007)
1937–1943.
36] G. Gelbard, O. Brès, R.M. Vargas, F. Vielfaure, U.F. Schuchardt, J. Am. Oil Chem.
Soc. 72 (1995) 1239–1241.
References
[
[
[
[1] L.L. Monteavaro, E.O. Silva, A.P.O. Costa, D. Samios, A.E. Gerbase, C.L. Petzhold,
37] Y. Miyake, K. Yokomizo, N. Matsuzaki, J. Am. Oil Chem. Soc. 75 (1998)
J. Am. Oil Chem. Soc. 82 (2005) 365–371.
1
091–1094.
38] G. Du, A. Tekin, E.G. Hammond, L.K. Woo, J. Am. Oil Chem. Soc. 81 (2004)
77–480.
[
[
[
2] A. Guo, W. Zhang, Z.S. Petrovic, J. Mater. Sci. 41 (2006) 4914–4920.
3] S.C. Godoy, M.F. Ferrão, A.E. Gerbase, J. Am. Oil Chem. Soc. 84 (2007) 503–508.
4] Y. Guo, J.H. Hardesty, V.M. Mannari, J.L. Massingill Jr., J. Am. Oil Chem. Soc. 84
4
[
[
39] M.R.S. Nunes, M. Martinelli, M.M. Pedroso, Quim. Nova 31 (2008) 818–821.
40] P.H. Cui, R.K. Duke, C.C. Duke, Chem. Phys. Lipids 152 (2008) 122–130.
(
2007) 929–935.
[5] K.M. Doll, S.Z. Erhan, J. Surfactants Deterg. 9 (2006) 377–383.