Evaluation Only. Created with Aspose.PDF. Copyright 2002-2021 Aspose Pty Ltd.
170
J. Am. Chem. Soc. 2000, 122, 170-171
(or rhenium) complexes (dppe)RPtM(CO)5 (M ) Mn: R ) Me
(1a), Et (1b), CH2CMe3 (1c); M ) Re: R ) Me (2a), Et (2b)),
giving new heterodinuclear complexes (dppe)RPtSC1R2RCH2M-
Regio- and Stereoselective Insertion Reactions of
Thiiranes into Pt-Mn (or Re) Bond in
Organoplatinum-Manganese or -Rhenium
Heterodinuclear Complexes as Intermediates toward
Desulfurization Reaction
(CO)5 (3-9) or anti- and syn-(dppe)RPtSCMeHCMeHCOMn-
(CO)4 (10) from which stereoselective desulfurization occurs to
afford olefin and Pt-S-M type complexes.
The heterodinuclear Pt-Mn(or Re) complexes 1a-c and 2a-b
were prepared in good yields by simple metathetical reactions of
PtRCl(dppe) with the corresponding transition-metal anions Na-
[M(CO)5] (M ) Mn, Re) in THF (eq 1).7
Sanshiro Komiya,* Shin-ya Muroi, Masaki Furuya, and
Masafumi Hirano
Department of Applied Chemistry
Tokyo UniVersity of Agriculture and Technology
2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
ReceiVed September 3, 1999
Introduction of direct heterotransition-metal direct bonds in
cluster complexes is expected to create a new era of transition-
metal chemistry in relation to multimetallic catalysis, and thus
many investigations on heterotransition-metal complexes have
been reported in recent years.1 Bimetallic catalysis such as sulfur-
ized Pt-Re oil reforming catalysts2 and Co-Mo and Ni-Mo hy-
drodesulfurization (HDS) catalysts3 shows cooperative effects of
these metals, but the origin of such effect is far from understood
at the molecular level. Although extensive research has been devo-
ted to elucidate the mechanisms of the reactions of heterodinuclear
transition-metal complexes and clusters with thiiranes and ben-
zothiophenes, few examples of direct participation of both metal
centers have been found in the literature.4 Also, factors controlling
selectivity in activation of thiiranes have not been well understood
despite their importance as model reactions as well as their wide
applications to chemical transformation of sulfur-containing
compounds.5 We previously reported model complexes of het-
erodinuclear organometallic complexes of group 10 and 6 (or 9)
metals, where unique organic group transfer reactions along metals
and enhanced CO insertion reactions have been demonstrated.6
Now we have found a highly regio- and stereocontrolled ring-
opening reaction of thiiranes with organoplatinum-manganese
The molecular structure of 1a was unequivocally determined
by X-ray crystallography.8 The platinum fragment has a distorted
square planar geometry, and two of the carbonyl groups of the
Mn(CO)5 fragment are distorted away from the ideal octahedron
due to the formation of semi-bridging character. The bond length
of Pt1-Mn1 of 2.795 Å is typical of covalent single bond.
When 1a was treated with thiiranes such as ethylene sulfide,
propylene sulfide, and isobutylene sulfide, regioselective insertion
of the Pt-M bond into the less hindered C-S bond took place
to give the new dinuclear complexes (dppe)RPtSC(1R)(2R)C(3R)-
(4R)M(CO)5, (M ) Mn: R ) Me, 1R ) 2R ) 3R ) 4R ) H (3);
R ) Me, 1R ) Me or H, 2R ) H or Me, 3R ) 4R ) H (4); R )
2
3
4
1
2
1R ) R ) Me, R ) R ) H (5). M ) Re: R ) Me, R ) R
3
4
1
2
3
) R ) R ) H (6); R ) R ) Me or H, R ) H or Me, R )
4R ) H (7); R ) Et, R ) R ) R ) R ) H (8); R ) Et, R
1
2
3
4
1
2
3
4
) Me or H, R ) H or Me, R ) R ) H (9)) (Scheme 1).9
Isolation of such insertion products is still very rare to date, since
further desulfurization usually takes place to liberate olefins.
Acidification of 4 with HCl in toluene liberated iPrSH
exclusively in 72% yield. Similarly, 5 and 7 liberated tBuSH and
iPrSH, respectively. These facts indicate that the ring-opening
reactions of thiiranes take place only at the less hindered C-S
bond. On the other hand, treatment of 1a with cis- and trans-2-
butene sulfides resulted in further carbonylation and S-coordina-
tion to Mn to give thiamanganacycle-coordinated platinum
* Corresponding author. Telephone: +81 42 388 7043. Fax: +81 42 387
(1) (a) Chetcuti, M. J. ComprehensiVe Organometallic Chemistry II; Abel,
E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon: Oxford, 1995; Vol.
10, pp 351-385. (b) Braunstein, P.; Rose, J. ComprehensiVe Organometallic
Chemistry II; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon:
Oxford, 1995; Vol. 10, pp 23-84. (c) Beringhelli, T.; Ceriotti, A.; D’Alfonso,
G.; Della Pergola, R.; Ciani, G.; Moret, M.; Sironi, A. Orgnaometallics 1990,
9, 1053-1059. (d) Knorr, M.; Strohmann, C. Organometallics 1999, 18, 248-
257.
(2) (a) Xiao, J.; Puddephatt, R. J. Coord. Chem. ReV. 1995, 143, 457-
500. (b) Bianchini, C.; Meli, A. J. Chem. Soc., Dalton Trans. 1996, 801-
814. (c) Hao, L.; Xiao, J.; Vittal, J. J.; Puddephatt, R. J. Organometallics
1997, 16, 2165-2174.
(3) (a) Raiz, U.; Curnow, O.; Curtis, M. D. J. Am. Chem. Soc. 1991, 113,
1416-1417. (b) Riaz, U.; Curnow, O. J.; Curtis, M. D. J. Am. Chem. Soc.
1994, 116, 4357-4363. (c) Mansour, M. A.; Curtis, M. D.; Kampf, J. W.
Organometallics 1995, 14, 5460-5462. (d) Curtis, M. D.; Druker, S. H. J.
Am. Chem. Soc. 1997, 119, 1027-1036.
(4) (a) Matsunaga, P. T.; Hillhouse, G. L. Angew. Chem., Int. Ed. Engl.
1994, 33, 1748-1749. (b) Baranger, A. M.; Hanna, T. A.; Bergman, R. G. J.
Am. Chem. Soc. 1995, 117, 10041-10046. (c) Uhl, W.; Grapner, R.; Reuter,
H. J. Organomet. Chem. 1996, 523, 227-234. (d) Proulx, G.; Bergman, R.
G. Organometallics 1996, 15, 133-141. (e) Adams, R. D.; Queisser, A.;
Yamamoto, J. H. J. Am. Chem. Soc. 1996, 118, 10674-10675. (f) Adams, R.
D.; Yamamoto, J. H. Organometallics 1997, 16, 1430-1439. (g) Etienne,
M.; Mathieu, R.; Donnadieu, B. J. Am. Chem. Soc. 1997, 119, 3218-3228.
(h) Adams, R. D.; Perrin, J. L. J. Am. Chem. Soc. 1999, 121, 3984-3991.
(5) (a) Sander, M. Chem. ReV. 1966, 66, 297-335 and references therein
(b) Mangette, J. E.; Powell, D. R.; West, R. Organometallics 1995, 14, 3551-
3557.
(6) (a) Komiya, S.; Endo, I. Chem. Lett. 1988, 1709-1712. (b) Fukuoka,
A.; Sadashima, T.; Endo, I.; Ohashi, N.; Kambara, Y.; Sugiura, T.; Miki, K.;
Kasai, N.; Komiya, S. Organometallics 1994, 13, 4033-4044. (c) Fukuoka,
A.; Sadashima, T.; Sugiura, T.; Wu, X.; Mizuho, Y.; Komiya, S. J. Organomet.
Chem. 1994, 473, 139-147. (d) Fukuoka, A.; Sugiura, T.; Yasuda, T.; Taguchi,
T.; Hirano, M.; Komiya, S. Chem. Lett. 1997, 329-330. (e) Fukuoka, A.;
Fukagawa, S.; Hirano, M.; Komiya, S. Chem. Lett. 1997, 377-378. (f) Yasuda,
T.; Fukuoka, A.; Hirano, M.; Komiya, S. Chem. Lett. 1998, 29-30.
complexes, anti- and syn-(dppe)MePtSCHMeCHMeCOMn(CO)5
(10), respectively, whose structures were unequivocally deter-
mined by X-ray structure analysis (Figure 1).10
(7) Physical and spectroscopic data for 1a are as follows: Yield 87%, 1H
NMR (CD2Cl2, 300 MHz) δ 0.81 (dd, 3H, JH-P ) 6.6, 6.3 Hz, JH-Pt ) 61.0
Hz, PtMe), 2.1-2.5 (m, 4H, PCH2CH2P), 7.5-7.9 (m, 20H, Ph); 31P{1H}
NMR (acetone-d6, 122 MHz) δ 49.1(s, 1P, JPt-P ) 1856 Hz, dppe), 59.2 (s,
1P, JPt-P ) 3394 Hz, dppe); IR (KBr, cm-1) 2036, 1945, 1933, 1920, 1907.
Λ (S cm2 mol-1, in THF) ) 0.0346. Anal. Found: C, 40.22; H, 2.90%. Calcd
for C32H27O5P2PtMn: C, 41.12; H, 2.91%. Molar electric conductivities of
these complexes in THF are very small, indicating that the Pt-M bond has
little ionic but covalent character. However, the observed ν(CO) bands are
close to those of [M(CO)5]-1, suggesting that the actual oxidation states of Pt
and M are close to +2 and -1 rather than their formal oxidation states of +1
and 0, respectively.
(8) X-ray data for 1a.: triclinic, P1h (No.2), R(Rw) ) 0.044 (0.077).
1
(9) Physical and spectroscopic data for 3 are as follows: Yield 81%, H
NMR (acetone-d6, 300 MHz) δ 0.58 (dd, 3H, JH-P ) 6.6, 4.8 Hz, JH-Pt
)
58.0 Hz, PtMe), 1.90 (t, 2H, J ) 6.9 Hz, SCH2CH2), 2.4-2.7 (m, 4H,
PCH2CH2P), 2.57 (m, 2H, SCH2CH2), 7.4-8.0 (m, 20H, Ph); 31P{1H} NMR
(acetone-d6, 122 MHz) δ 45.9 (s, 1P, JPt-P ) 1820 Hz, dppe), 47.4 (s, 1P,
JPt-P ) 3289 Hz, dppe); IR (KBr, cm-1) 2051, 1927, 1949, 1927, 1858. Λ (S
cm2 mol-1 in THF) ) 0.170. Anal. Found: C, 47.46; H, 4.07; S, 3.78%.
Calcd for C34H31O5SP2PtMn: C, 47.28; H, 3.62; S, 3.71%.
(10) X-ray data for anti- and syn-10. anti-10‚Me2CO from acetone: triclinic,
P1h(No. 2) R(Rw) ) 0.060 (0.080). syn-10‚0.5C6H6 from benzene/hexane:
triclinic, P1h(No. 2), R (Rw) ) 0.079 (0.107).
10.1021/ja993185m CCC: $19.00 © 2000 American Chemical Society
Published on Web 12/22/1999