Notes and references
‡ CaO/ZSM-5 composites were prepared by wet impregnation of 1 part
Ca(NO3)2 to 4 parts H-ZSM-5, (Si : Al = 80:1, obtained from Zeolyst
Corp.), drying at 125 °C. overnight, followed by calcination at 500 °C.
overnight. Catalytic coupling reactivity was not evident until after the first
CH3Br/HBr metathesis/regeneration cycle.
1 C. D. Chang and A. J. Silvestri, J. Catal., 1977, 47, 249.
2 C. D. Chang, W. H. Lang and A. J. Silvestri, US Pat., 3 998 898,
1976.
3 C. D. Chang and W. H. Lang, US Pat., 3 899 544, 1975.
4 S. A. Butter, A. T. Jurewicz and W. W. Kaeding, US Pat., 3 894 107,
1975.
5 (a) M. H. Gorin and E. Gorin, US Pat. 2, 488, 083, 1949; (b) V. N.
Romannikov and K. G. Ione, Kinet. Katal., 1984, 25, 75.
6 R. P. Noceti and C. E. Taylor, US Pat., 4 769 504, 1988.
7 C. E. Taylor, R. P. Noceti and R. R. Schehl, in Methane Conversion, ed.
D. M. Bibby, C. D. Chang, R. F. Howe and S. Yurchak, Elsevier,
Amsterdam, 1988, p. 483.
8 G. A. Olah, H. Doggweiler, J. D. Felberg, S. Frohlich, M. J. Grdina, R.
Karpeles, T. Keumi, S.-I. Inaba, W. M. Ip, K. Lammertsma, G. Salem
and D. C. Tabor, J. Am. Chem. Soc., 1984, 106, 2143.
9 C. M. White, L. J. Douglas, J. P. Hackett and R. R. Anderson, Energy
Fuels, 1992, 6, 76.
10 Y. Sun, S. M. Campbell, J. H. Lunsford, G. E. Lewis, D. Palke and L.-M.
Tau, J. Catal., 1993, 143, 32.
11 D. K. Murray, T. Howard, P. W. Goguen, T. R. Krawietz and J. F. Haw,
J. Am. Chem. Soc., 1994, 116, 6354.
12 K.-J. Jens, in Methane Conversion, ed. D. M. Bibby, C. D. Chang, R. F.
Howe, and S. Yurchak, Elsevier, Amsterdam, 1988, p. 491.
13 J. R. Anderson, Appl. Catal., 1989, 47, 177.
14 P. Lersch and F. Bandermann, Appl. Catal., 1991, 75, 133.
15 J. F. Haw, W. Song, D. M. Marcus and J. B. Nicholas, Acc. Chem. Res.,
2003, 36, 317.
16 S. Svelle, S. Kolboe, U. Olsbye and O. Swang, J. Phys. Chem. B, 2003,
107, 5251.
17 X.-P. Zhou, A. Yilmaz, G. A. Yilmaz, I. M. Lorkovic, L. E. Laverman,
M. J. Weiss, J. H. Sherman, E. W. Mcfarland, G. D. Stucky and P. C.
Ford, Chem. Commun., 2003, 2294.
18 X.-P. Zhou, I. M. Lorkovic, G. D. Stucky, P. C. Ford, J. H. Sherman and
P. Grosso, US Pat., 6 462 243, 2002.
19 X.-P. Zhou, I. M. Lorkovic, G. D. Stucky, P. C. Ford, J. H. Sherman and
P. Grosso, US Pat., 6 472 572, 2002.
20 X.-P. Zhou, I. M. Lorkovic and J. H. Sherman, US Pat., 6 486 368,
2002.
21 M. Stoecker, Microporous Mesoporous Mater., 1999, 29, 3.
22 D. R. Lide, CRC Handbook of Chemistry and Physics 1999–2000: A
Ready-Reference Book of Chemical and Physical Data, CRC Press,
2000.
Fig. 2 Comparison of product selectivity for methane/bromine reaction
product feed vs. pure CH3Br feed (conditions as in Fig. 1).
Br2 to Br2 (1.07 V vs. NHE), which in comparison with Cl2 (1.36
V) and I2 (0.54 V), makes alkane bromination significantly less
exothermic, yet spontaneous enough to go to completion. Bromine
also allows for utilization of a wider range of metal oxides as
bromide metathesis reagents because the reoxidation of metal
bromides by O2 (1.23 V) can be accomplished under relatively mild
conditions. Despite the slightly lower selectivity for monobromina-
tion versus monochlorination for comparable methane conversion,
a higher degree of reversibility is expected for the weaker C–Br
bonds22 than exists for C–Cl bonds for corresponding C1 species. In
addition, CH3Br and CH2Br2 are expected to be significantly easier
to separate from each other than are CH3Cl and CH2Cl2. Hence
polybrominated methanes are not necessarily lost from a methane
conversion process and may be induced to comproportionate with
CH4 feed, raising overall CH3Br, and ultimately olefin, yield.23
We direct further work towards establishing the generality of the
condensation reactivity of CH3Br over microporous solids to give
olefins or other products and draw on analogies to CH3OH
coupling.21 Ultimately our goal is to utilize the three step low
temperature route—bromination, coupling, regeneration—to
streamline the production of higher hydrocarbons from methane,
technology which is presently dominated by processes involving
MeOH or synthesis gas as intermediates. Selective bromination and
reactor configurations favoring comproportionation of methane and
CH2Br2 or CHBr3 to CH3Br are potential routes to improved carbon
utilization.
This research was funded by Gas Reaction Technologies, Inc.,
through a sponsored research agreement with the University of
California.
23 I. M. Lorkovic, P. Grosso, J. H. Sherman, E. M. Mcfarland, P. C. Ford
and G. D. Stucky, manuscript in preparation.
C h e m . C o m m u n . , 2 0 0 4 , 5 6 6 – 5 6 7
567