too. The EPR signal intensity of paramagnetic species is inver-
sely proportional to the temperature. Although EPR is a
highly sensitive method, this may lead to poor signal-to-noise
ratios when catalytic reactions have to be studied at high tem-
peratures and the concentration of paramagnetic species is
low, i.e., in the case of isolated TMI. Moreover, certain TMI
can have very short relaxation times depending on their parti-
cular coordination symmetry and electronic configuration so
that at ambient or elevated temperatures no EPR signal can
References
1
2
3
Z. Sojka, Catal. Rev.-Sci. Eng., 1995, 37, 462.
K. Dyrek and M. Che, Chem. Rev., 1997, 97, 305.
K. Dyrek and M. Che, in Spectroscopy of Transition Metal Ions
on Surfaces, ed. B. M. Weckhuysen, P. Van Der Voort and
G. Catana, Leuven University Press, Leuven, 2000, p. 45.
M. Che and E. Giamello, Stud. Surf. Sci. Catal. B, 1989, 57, 265.
J. C. Vedrine, in Characterization of Heterogeneous Catalysts,
ed. F. Delannay, Marcel Dekker, Inc., New York, 1984, p. 161.
M. Labanowska, Chem. Phys. Chem., 2001, 2, 712.
4
5
4
+
6
7
be observed. This holds, e.g., for V in weakly distorted octa-
Z. Sojka and M. Che, C. R. Acad. Sci. Paris, Ser. IIc, Chim., 2000,
3, 163.
3
+
3+
hedral or tetrahedral symmetry, for V , Mn and for various
other TMI with an even number of unpaired electrons as well
as for most of the rare earth ions for which strong spin–orbit
coupling shortens the relaxation times. Weak dipolar or weak
spin–spin exchange interactions between TMI of medium
mutual distance which do not give rise to exchange-narrowing
can broaden the EPR signal beyond the limit of detection com-
pletely excluding the respective catalysts from in-situ EPR
measurements.
8
9
D. M. Murphy and C. C. Rowlands, Curr. Opin. Solid State
Mater. Sci., 2001, 5, 97.
A. Br u¨ ckner, in Spectroscopy of Transition Metal Ions on Surfaces,
ed. B. M. Weckhuysen, P. Van Der Voort and G. Catana, Leuven
University Press, Leuven, 2000, p. 69.
1
1
0
1
K. Nowinska and A. B. Wieckowski, Z. Phys. Chem. NF, 1989,
162, 231.
M. C. Paganini, L. Dall’Acqua, E. Giamello, L. Lietti, P. Forzatti
and G. Busca, J. Catal., 1997, 166, 195.
12 A. M. Prakash and L. Kevan, J. Phys. Chem., 1999, 103, 2214.
Besides certain paramagnetic TMI that escape EPR detec-
tion for reasons discussed above, all TMI in highest oxidation
states which do not possess unpaired electrons are not EPR-
1
1
1
3
4
5
A. Br u¨ ckner, Catal. Rev.-Sci. Eng., 2003, 45, 97.
B. M. Weckhuysen, Chem. Commun., 2002, 97.
M. A. Banares, M. O. Guerriero-P e´ rez, J. L. G. Fierro and
G. Garcia Cortez, J. Mater. Chem., 2002, 12, 3337.
H. Topsøe, J. Catal., 2003, 216, 155.
5
+
6+
active. However, those species (e.g. V , Cr ) may well be
involved in catalytic reaction steps. Visualizing their changes
requires the combination with other suitable spectroscopic
techniques. It has been demonstrated above that the coupling
of operando EPR/UV-vis-DRS/on-line GC is very beneficial
in this respect since it extends the variety of simultaneously
detectable valence states of TMI and their interconversion dur-
ing reaction. Other information that cannot be gained from
operando EPR concerns, e.g., the particular structure of dia-
magnetic intermediates and products adsorbed on the catalyst
surface which, however, is provided by operando FTIR spec-
troscopy. For elucidating comprehensive structure–reactivity-
relationships it is, thus, very helpful to study the respective
catalytic system by different in-situ methods. The advantages
1
6
17 A. Br u¨ ckner, B. Kubias, B. L u¨ cke and R. St o¨ ßer, Colloids Surf. A:
Physikochem. Eng. Aspects, 1996, 115, 179.
1
1
8
9
A. Br u¨ ckner, Appl. Catal. A: General, 2000, 200, 287.
A. Br u¨ ckner, A. Martin, N. Steinfeldt, G.-U. Wolf and B. L u¨ cke,
J. Chem. Soc., Faraday Trans., 1996, 92, 4257.
2
0
A. Br u¨ ckner, A. Martin, B. L u¨ cke and F. K. Hannour, Stud. Surf.
Sci. Catal., 1997, 110, 919.
21 K. M. Eriksen, R. Fehrmann and N. J. Bjerrum, J. Catal., 1991,
132, 263.
2
2
C. Oehlers, R. Fehrmann, S. G. Masters, K. M. Eriksen, D. E.
Sheinin, B. S. Bal’zhinimaev and V. I. Elokhin, Appl. Catal. A:
General, 1996, 147, 127.
2
3
P. Rybarczyk, H. Berndt, J. Radnik, M.-M. Pohl, O. Buyevskaya,
M. Baerns and A. Br u¨ ckner, J. Catal., 2001, 202, 45.
1
3
of this approach have been reviewed very recently.
24 A. Br u¨ ckner, P. Rybarczyk, H. Kosslick, G.-U. Wolf and M.
Baerns, Stud. Surf. Sci. Catal. B, 2002, 142, 1141.
All operando EPR investigations published so far have been
performed in X-band (microwave frequency: ꢄ9.5 GHz) using
the continuous wave (cw) technique. Although modern pulse-
EPR methods have rapidly developed in recent years, their
application with respect to TMI in solid catalysts is limited
since both, low concentration of paramagnetic species and
low recording temperatures being intrinsic requirements of
pulse-EPR echo techniques are far beyond the conditions
which have to be met for investigations of real catalysts during
reaction. Operando EPR measurements at higher microwave
frequencies (e.g. at ꢄ35 GHz in Q-band), which would be help-
ful in certain cases for assigning complex spectra, have not
been performed so far since the dimensions of the EPR cavity
set an upper limit for the diameter of a catalytic flow reactor.
With a similar equipment as shown in Fig. 1, operando mea-
surements in Q-band would require reaction tube diameters
of less than 1 mm which are not suitable for catalytic flow
reactors.
2
5
K. M. Sancier, T. Dozono and H. Wise, J. Catal., 1971,
3, 270.
Z. Sojka and M. Che, J. Phys. Chem., 1995, 99, 5418.
2
2
2
6
7
A. Br u¨ ckner, J. Radnik, D.-L. Hoang and H. Lieske, Catal. Lett.,
1
999, 60, 183.
28 A. Br u¨ ckner, Chem. Commun., 2001, 2122.
29 A. Br u¨ ckner, U. Lohse and H. Mehner, Microporous Mesoporous
Mater., 1998, 20, 207.
3
0
U. Lohse, A. Br u¨ ckner, E. Schreier, R. Bertram, J. J a¨ hnchen and
R. Fricke, Microporous Mater., 1996, 7, 139.
A. V. Kucherov, J. L. Gerlock, H.-W. Jen and M. Shelef, Zeolites,
3
1
1
995, 15, 9.
32 A. V. Kucherov, J. L. Gerlock, H.-W. Jen and M. Shelef, Zeolites,
1995, 15, 15.
3
3
A. V. Kucherov, J. L. Gerlock, H.-W. Jen and M. Shelef,
J. Catal., 1995, 152, 63.
K. Dyrek, D. Kiessling, M. Labanowska, G. Wendt and J.
Widziszewska, Colloids Surf. A: Physikochem. Eng. Aspects,
3
4
1
993, 72, 183.
35 M. Hunger and J. Weitkamp, Angew. Chem., Int. Ed., 2001,
40, 2954.
Despite the above mentioned limitations, operando EPR has
been shown to be a very useful tool for investigating, in parti-
cular, heterogeneous catalytic gas-phase reactions over transi-
tion metal oxide catalysts. Therefore, it is desirable that this
technique will receive more future attention.
3
6
W. Matir and J. H. Lunsford, J. Am. Chem. Soc., 1981, 103,
728.
J. H. Lunsford, Catal. Today, 1990, 6, 235.
3
3
3
7
8
H. G. Karge, J.-P. Lange, A. Gutsze and M. Laniecki, J. Catal.,
1
988, 114, 144.
3
4
9
J. C. Vedrine, in Characterization of Heterogeneous Catalysts,
ed. F. Delannay, Marcel Dekker, Inc., New York, 1984.
A. Br u¨ ckner, in In situ Spectroscopy of Catalytic Solids, ed.
B. M. Weckhuysen, Academic Science Publishers, in press.
Z. Sojka and M. Che, Appl. Magn. Reson., 2001, 20, 433.
D. J. E. Ingram, in Proceedings of the 3rd Conference on Carbon,
Pergamon Press, New York, 1959, p. 94.
0
Acknowledgements
4
4
1
2
The author thanks U. Bentrup, A. Martin, J. Radnik, D. L.
Hoang, I. Pitsch, R. Fricke and M. Baerns for fruitful coop-
eration. Financial support by the German Federal Ministry
of Education and Research (project no. 03C0280) is gratefully
acknowledged.
4
3
L. S. Singer, W. H. Smith and G. Wagoner, Rev. Sci. Instrum.,
1961, 32, 213.
44 A. Bruckner, B. Kubias and B. Lucke, Catal. Today, 1996,
¨
32, 215.
¨
Phys. Chem. Chem. Phys., 2003, 5, 4461–4472
4471