10.1002/ejic.201800926
European Journal of Inorganic Chemistry
FULL PAPER
(2)
14770–14771; e) M. Bjørgen, S. Svelle, F. Joensen, J. Nerlov, S.
Kolboe, F. Bonino, L. Palumbo, S. Bordiga, U. Olsbye, J. Catal. 2007,
249, 195–207.
where IA(B) and IA(L) correspond to the integrated absorbance of BAS
and LAS band (cm-1), respectively, R corresponds to the radius of
catalyst disk (cm) and W corresponds to the weight of disk (mg).
Thermogravimetric analysis (TGA) of used catalysts were carried out on
a Netzsch STA 494 C Jupiter TG/DSC instrument. The weight loss of
deactivated catalysts between 300 °C and 800 °C were taken as the total
coke content. Correspondingly, the catalyst average coke formation rate
was calculated by dividing the total coke content by the catalyst lifetime
(t90).
[3]
[4]
a) C. S. Mei, P. Y. Wen, Z. C. Liu, H. X. Liu, Y. D. Wang, W. M. Yang, Z.
K. Xie, W. M. Hua, Z. Gao, J. Catal. 2008, 258, 243–249; b) C. D.
Chang, C. T. Chu, R. F. Socha, J. Catal. 1984, 86, 289–296; c) Z. J. Hu,
H. B. Zhang, L. Wang, H. X. Zhang, Y. H. Zhang, H. L. Xu, W. Shen, Y.
Tang, Catal. Sci. Technol. 2014, 4, 2891–2895.
[24]
.a) J. Kim, M. Choi, R. Ryoo, J. Catal. 2010, 269, 219–228; b) Q. Zhang,
S. Hu, L. L. Zhang, Z. J. Wu, Y. J. Gong, T. Dou, Green Chem. 2014,
16, 77–81; c) L. Q. Meng, B. Mezari, M. G. Goesten, E. J. M. Hensen,
Chem. Mater. 2017, 29, 4091–4096; d) J. Ding, P. J. Chen, S. Y. Fan, Z.
Q. Zhang, L. P. Han, G. F. Zhao, Y. Liu, Y. Lu, ACS Sustainable Chem.
Eng. 2017, 5, 1840–1853; e) T. L. Cui, L. B. Lv, W. B. Zhang, X. H. Li, J.
S. Chen, Catal. Sci. Technol. 2016, 6, 5262–5266.
Catalytic tests
The MTP reactions were performed in a quartz tubular fixed-bed
reactor (i.d., 8 mm) at atmospheric pressure and a K-type thermocouple
was placed near the catalyst bed for the detection and control of the
reaction temperature. Prior to reaction, 0.2 g of sieved catalyst particles
(40-60 mesh) were loaded between two quartz wool plugs and activated
at 550 °C in the nitrogen flow of 50 ml min-1 for 2 h. Then, the catalyst
bed temperature was decreased to 460 °C for MTP reaction. A high
performance liquid chromatography (HPLC) pump was used to feed
methanol into the reactor system with the weight hourly space velocity
(WHSV) of 1.0 g g-1 h-1 and the nitrogen flow was maintained at 50 ml
min-1. The product effluent was analyzed by an online gas
chromatograph of GC/2010 plus (Shimadzu, HP-PLOT/Q capillary
column) with a flame ionization detector (FID). The transfer line between
the reactor and the gas chromatograph was maintained at 250 °C to
avoid the possible condensation of organic moieties. Dimethyl ether
(DME) was treated as an unconverted reactant, so the methanol
[5]
[6]
a) J. S. Martínez-Espín, K. D. Wispelaere, T. V. W. Janssens, S. Svelle,
K. P. Lillerud, P. Beato, V. V. Speybroeck, U. Olsbye, ACS Catal. 2017,
7, 5773–5780; b) S. Müller, Y. Liu, F. M. Kirchberger, M. Tonigold, M.
SanchezSanchez, J. A. Lercher, J. Am. Chem. Soc. 2016, 138, 15994–
16003.
.I. Yarulina, S. Bailleul, A. Pustovarenko, J. R. Martinez, K. D.
Wispelaere, J. Hajek, B. M. Weckhuysen, K. Houben, M. Baldus, V. V.
Speybroeck, F. Kapteijn, J. Gascon, ChemCatChem 2016, 8, 3057–
3063.
[7]
[8]
D. L. Cai, Y. H. Ma, Y. L. Hou, Y. Cui, Z. Jia, C. X. Zhang, Y. Wang, F.
Wei, Catal. Sci. Technol. 2017, 7, 2440–2444.
a) M. Milina, S. Mitchell, P. Crivelli, D. Cooke, J. Pꢀrez-Ramírez, Nat.
Commun. 2014, 5, 3922–3931; b) J. C. Groen, W. D. Zhu, S. Brouwer,
S. J. Huynink, F. Kapteijn, J. A. Moulijn, J. Pꢀrez-Ramírez, J. Am.
Chem. Soc. 2007, 129, 355–360; c) D. Verboekend, J. Pꢀrez-Ramírez,
Chem. Eur. J. 2011, 17, 1137–1147.
conversion (XMeOH
)
and product selectivity (SCxHy
)
were calculated
[9]
a) C. J. H. Jacobsen, C. Madsen, J. Houzvicka, I. Schmidt, A. Carlsson,
J. Am. Chem. Soc. 2000, 122, 7116–7117; b) Y. S. Tao, H. Kanoh, K.
Kaneko, J. Am. Chem. Soc. 2003, 125, 6044–6045; c) M. Choi, H. S.
Cho, R. Srivastava, C. Venkatesan, D. H. Choi, R. Ryoo, Nat. Mater.
2006, 5, 718–723.
according to Eq. (3) and (4), respectively,
(3)
[10] a) M. E. Davis, Chem. Mater. 2013, 26, 239–245; b) X. Meng, F. S.
Xiao, Chem. Rev. 2013, 114, 1521–1543.
(4)
[11] a) T. G. Ge, Z. L. Hua, X. Y. He, J. Lv, H. R. Chen, L. X. Zhang, H. L.
Yao, Z. W. Liu, C. C. Lin, J. L. Shi, Chem. Eur. J. 2016, 22, 7895–7905;
b) X. Y. He, T. G. Ge, Z. L. Hua, J. Zhou, J. Lv, J. L. Zhou, Z. C. Liu, J.
L. Shi, ACS Appl. Mater. Interfaces 2016, 8, 7118–7124.
where N is the number of moles and x is the number of carbon atoms,
superscript i and o refer to the components at the inlet and outlet of
reactor, respectively.
[12] T. Y. Liang, J. L. Chen, Z. F. Qin, J. F. Li, P. F. Wang, S. Wang, G. F.
Wang, M. Dong, W. B. Fan, J. G. Wang, ACS Catal. 2016, 6, 7311–
7325.
[13] a) C. S. Zhang, Q. M. Wu, C. Lei, S. X. Pan, C. Q. Bian, L. Wang, X. J.
Meng, F. S. Xiao, Ind. Eng. Chem. Res. 2017, 56, 1450–1460; b) C.
Sun, J. M. Du, J. Liu, Y. S. Yang, N. Ren, W. Shen, H. L. Xu, Y. Tang,
Chem. Commun. 2010, 46, 2671–2673; c) J. Ahmadpour, M.
Taghizadeh, J. Nat. Gas. Sci. Eng. 2015, 23, 184–194; d) B. Li, Z. J. Hu,
B. Kong, J. X. Wang, W. Li, Z. K. Sun, X. F. Qian, Y. S. Yang, W. Shen,
H. L. Xu, D. Y. Zhao, Chem. Sci. 2014, 5, 1565–1573.
Acknowledgements
This work was supported by National Natural Science
Foundation of China (U1510107, 21776297, 21403303) and
Shanghai Rising-Star Program (18QB1404500).
[14] a) S. Svelle, U. Olsbye, F. Joensen, M. Bjørgen, J. Phys. Chem. C
2007, 111, 17981–17984; b) M. Rostamizadeh, F. Yaripour, Fuel 2016,
181, 537–546.
Keywords: Zeolites • Mesoporous materials • Microporous
materials • Acidity • Propylene selectivity
[15] M. Milina, S. Mitchell, D. Cooke, P. Crivelli, J. Pérez-Ramírez, Angew.
Chem., Int. Ed. 2015, 54, 1591–1594.
[1]
a) C. J. Pereira, Science 1999, 285, 670–671; b) Y. Traa, Chem.
Commun. 2010, 46, 2175–2187; c) H. M. T. Galvis, K. P. de Jong, ACS
Catal. 2013, 3, 2130–2149; d) U. Olsbye, S. Svelle, K. P. Lillerud, Z. H.
Wei, Y. Y. Chen, J. F. Li, J. G. Wang, W. B. Fan, Chem. Soc. Rev.
2015, 44, 7155–7176.
[16] a) J. Ding, M. Wang, L. M. Peng, N. H. Xue, Y. M. Wang, M. Y. He,
Appl. Catal., A 2015, 503, 147–155; b) H. B. Zhang, Z. J. Hu, L. Huang,
H. X. Zhang, K. S. Song, L. Wang, Z. P. Shi, J. X. Ma, Y. Zhuang, W.
Shen, Y. H. Zhang, H. L. Xu, Y. Tang, ACS Catal. 2015, 5, 2548–2558.
[17] C. Y. Dai, A. F. Zhang, M. Liu, L. Gu, X. W. Guo, C. S. Song, ACS
Nano 2016, 10, 7401–7408.
[2]
a) I. M. Dahl, S. Kolboe, Catal. Lett. 1993, 20, 329–336; b) I. M. Dahl, S.
Kolboe, J. Catal. 1994, 149, 458–464; c) I. M. Dahl, S. Kolboe, J. Catal.
1996, 161, 304–309; d) S. Svelle, F. Joensen, J. Nerlov, U. Olsbye, K.-
P. Lillerud, S. Kolboe, M. Bjørgen, J. Am. Chem. Soc. 2006, 128,
[18] a) S. L. Zhang, Y. J. Gong, L. L. Zhang, Y. S. Liu, T. Dou, J. Xu, F.
Deng, Fuel Process. Technol. 2015, 129, 130–138; b) S. M. T. Almutairi,
This article is protected by copyright. All rights reserved.